Lignin, a complex natural polymer produced by all vascular terrestrial plants is second in abundance only to cellulose and is the matrix holding plant fibres together. Lignins are recovered mainly as byproducts from woodpulping processes with about 100 million tons produced annually worldwide.
Large volume uses for lignin byproduct other than for generation of energy (kraft process) are most likely to be in materials applications.
In the last decades many studies aimed to the recycling of different lignins (sulfite, kraft, organosolv, steam exploded, hydrolytic, etc.) in polymeric systems based on thermoplastics, thermosettings, elastomers, adhesives, sealants, etc.
Among all the technical lignins, sulfate lignins are chemically the most reactive and are therefore used to modify polymers. The oldest and the most familiar application of lignin as a component of polymeric materials involves the reinforcement of rubber. Multicomponent materials can be created by combination with other macromolecules like polyethylene, polypropylene, or poly(vinyl alcohol) to produce polyblends, block copolymers or interpenetrating polymer networks.
The present communication will try to present such examples of polymeric systems based on recycled lignin, and synthetic polymers such as: polyurethane, epoxy, acrylics, silicones.