Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:32:24.015Z Has data issue: false hasContentIssue false

Surface Energy Compatibilites of Cellulose and Polypropylene

Published online by Cambridge University Press:  15 February 2011

Daniel T. Quillin
Affiliation:
University of Wisconsin-Madison, 1415 Johnson St., Madison, WI 53706
Daniel F. Caulfield
Affiliation:
USDA Forest Products Laboratory, One Gifford Pinchot Drive, Madison, WI 53705
James A. Koutsky
Affiliation:
University of Wisconsin-Madison, 1415 Johnson St., Madison, WI 53706
Get access

Abstract

In addition to its use in recycled paper products, recovered lignocellulosic fiber can be used as a reinforcement filler in composites with polyolefins. However, problems in both processing and product performance are often caused by the incompatibilities of surface energies between hydrophilic cellulose and non-polar polyolefin. This poor match in surface polarities is detrimental to strong adhesive bonding between olefin and cellulose. This work examines the effect of surface energy on the adhesion properties of polypropylene and cellulose. In particular, three materials accepted as paper-sizing agents were used to change the cellulosic fiber's surface energy to make it more compatible withthe surface energy of polypropylene.

Cellulose fibers were treated by various methods with (1) alkyl ketene dimer, (2) alkenyl succinic anhydride, and (3) stearic acid and were characterized by their surface energies as determined by single fiber wettability measurements using the Wilhelmy technique. These measurements are discussed in detail. Results from these measurments can be related to differences in adhesion between treated cellulose and polypropylene, which can be measured by internal bond tests on hot-pressed composite sheets.

Results indicate that the use of sizing agents reduces the acid/base (hydrogen bonding) character of the cellulose surface. Interactions involving hydrogen bonding are important in cellulose/modified-polypropylene composites. Reduction of these interactions appears to lead to a corresponding reduction in adhesion between cellulose and polypropylene.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Felix, J.M. and Gatenholm, P., J. Appl. Polym. Sci., 42, 609 (1991).CrossRefGoogle Scholar
2. Kolosick, P.C., Scott, C.T., Koutsky, J.A., and Myers, G.E., in Materials Interactions Relevant to Pulp. Paper, and Wood Industries, ed. by Caulfield, D.F., Passaretti, J.D., and Sobczynski, S.F. (Mater. Res. Soc. Proc. 197, Pittsburgh, PA 1990), p. 119.Google Scholar
3. Raj, R.G., Kokta, B.V., and Daneault, C., Intern. J. Polymeric Mater., 12, 239 (1989).CrossRefGoogle Scholar
4. Lightsey, G.R., Short, P.H., and Sinha, V.K.K., Polym. Eng. Sci., 17 (5), 305 (1977).Google Scholar
5. Klason, C., Kubat, J., and Stromvall, H.-E., Intern. J. Polymeric Mater., 10, 159 (1984).CrossRefGoogle Scholar
6. Dalvag, H., Klason, C., and Stromvall, H.-E., Intern. J. Polymeric Mater., 11, 9 (1985).CrossRefGoogle Scholar
7. deBruyne, N.A., The Aircraft Engineer (supplement to flight), 18 (12), 51 (1939).Google Scholar
8. Chung, F.H., J. Appl. Polym. Sci., 42, 1319 (1991).Google Scholar
9. Fowkes, F.M., Ind. Eng. Chem., 56 (12), 40 (1964).CrossRefGoogle Scholar
10. Fowkes, F.M., J. Phys. Chem., 66, 382 (1962).CrossRefGoogle Scholar
11. Fowkes, F.M., J. Adhesion, 4, 155 (1972).CrossRefGoogle Scholar
12. Berg, J.C., in Composite Systems from Natural and Synthetic Polymers, ed. by Salmen, L., de Ruvo, A., Seferis, J.C., and Stark, E.B., (Elsevier Science Publishers B.V., Amsterdam 1986), p. 23.Google Scholar
13. Kaelble, D.H. and Uy, K.C., J. Adhesion, 2, 50 (1970).CrossRefGoogle Scholar
14. Fowkes, F.M., J. Adhesion Sci. and Technol., 1, 7 (1987).CrossRefGoogle Scholar
15. Vrbanac, M.D. and Berg, J.C., J. Adhesion Sci. and Technol., 4, 255 (1990).CrossRefGoogle Scholar
16. Larsson, A. and Johns, W.E., J. Adhesion, 25, 121 (1988).CrossRefGoogle Scholar
17. Ma, D., Johns, W.E., Dunker, A.K., Bayoumi, A.E., J. Adhesion Sci. Technol., 5, 411 (1990).Google Scholar
18. Fowkes, F.M. and Mostafa, M.A., IEC Prod. Res. Dev., 17, 3 (1978).Google Scholar
19. Westerlind, B.S. and Berg, J.C., J. Appl. Polym. Sci., 36, 523 (1988).CrossRefGoogle Scholar
20. Tsutsumi, K., Ishida, S., and Shibata, K., Colloid Poly. Sci., 268, 31 (1990).CrossRefGoogle Scholar
21. Young, R.A., Wood and Fiber, 8 (2), 120 (1976).Google Scholar
22. Morra, M., Occhiello, E., Gila, L. and Garbassi, F., J. Adhesion, 33, 77 (1990).CrossRefGoogle Scholar
23. Kaelble, D.H., Dynes, P.J., and Cirlin, E.H., J. Adhesion, 6, 23 (1974).CrossRefGoogle Scholar
24. Fowkes, F.M., J. Adhesion Sci. Technol., 4, 669 (1990).CrossRefGoogle Scholar
25. Huttinger, K.J., in Carbon Fibers Filaments and Compoosites, ed. by Figueiredo, J.L., et al., (Kluwer Academic Publishers, 1990), p. 245.CrossRefGoogle Scholar
26. McCarthy, W.R. and Stratton, R.A., TappiJ., 70 (12), 117 (1987).Google Scholar
27. Odberg, L., et al., Tappi J., 70 (4), 135 (1987).Google Scholar
28. Quillin, D.T., Caulfield, D.F., and Koutsky, J.A., Intern. J. Polymeric Mater., in press (1992).Google Scholar
29. Toussaint, A.F. and Luner, P., in Cellulose and Wood - Chemistry and Technology (Proc. 10th Cellulose Conf., Syracuse) ed. by Schuerch, C., (Wiley Interscience, 1988), p. 1515.Google Scholar
30. Herczeg, A., Forest Prod. J., 15 (11), 499 (1965).Google Scholar
31. Luner, P. and Sandell, M., J. Polym. Sci. Pt. C, 28, 115 (1969).CrossRefGoogle Scholar
32. Lee, S.B. and Luner, P., TappiJ., 55 (1), 116 (1972).Google Scholar
33. Collett, B.M., Wood Sci. Technol., 6, 1 (1972).Google Scholar
34. Hodgson, K.T. and Berg, J.C., Wood Fiber Sci., 20 (11), 3 (1988).Google Scholar
35. Borch, J., J. Adhesion Sci. Technol., 5, 523 (1991).CrossRefGoogle Scholar
36. Lindstrom, T. and Soderberg, G., Nordic Pulp Paper Res. J., 1, 26 (1986).Google Scholar
37. Good, R.J., Chaudhury, M.K., and van Oss, C.J., in Fundamentals of Adhesion, ed. by Lee, L.-H., (Plenum Press, 1991), p. 153.CrossRefGoogle Scholar
38. Klungness, J.H., Tappi J., 64 (12), 65 (1981).Google Scholar
39. Baszkin, A. and Ter-Minassian-Saraga, L., Polymer, 19, 1083 (1978).CrossRefGoogle Scholar
40. Carley, J.F. and Kitze, P.T., Polym. Eng. Sci., 20 (5), 330 (1980).Google Scholar
41. Westerlind, B., Larsson, A., and Rigdahl, M., Int. J. Adhesion Adhesives, 7 (3), 141 (1987).Google Scholar
42. Kim, C.Y., Suranyi, G., and Goring, D.A.I., J. Polym. Sci. Pt. C, 30, 533 (1970).CrossRefGoogle Scholar