Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-28T23:49:22.078Z Has data issue: false hasContentIssue false

Application of Solubility Parameters to Lignocellulosic/Thermoplastic Composites

Published online by Cambridge University Press:  15 February 2011

Don H. White
Affiliation:
Department of Chemical Engineering, University of Arizona, Tucson, Arizona 85721
S. C. Park
Affiliation:
Department of Chemical Engineering, University of Arizona, Tucson, Arizona 85721
Get access

Abstract

The usefulness of solubility parameters in identifying miscible polymer blends is reviewed. The use of wood fibers in mixtures of recycled thermoplastics is of current interest. These composites do not require miscible blends of polymers, but must exhibit compatibility in order to have good adhesion and physical properties. The use of solubility parameters to design improved composites is cited. This approach is then applied to wood fiber/polyolefin thermoplastic composites.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References Cited

1. Flory, P.J., J. Chem. Phys. 2, 669 (1941).Google Scholar
2. Flory, P.J., J. Chem. Phys. 10, 51 (1942).Google Scholar
3. Huggins, M.L., J. Chem. Phys. 2, 440 (1941).Google Scholar
4. Huggins, M.L., Ann. N.Y. Acad. Sci. 43, 1 (1942).Google Scholar
5. Scott, R.L., J. Chem. Phys. 17, 279 (1949).Google Scholar
6. Krause, S. in Polymer Blends, Vol. 1, edited by Paul, D.R. and Newman, S. (Academic Press Publishers, New York, 1978), p. 27.Google Scholar
7. Paul, D.R. in Polymer Blends, Vol. 1, edited by Paul, D.R. and Newman, S. (Academic Press Publishers, New York, 1978), pp. 57.Google Scholar
8. Paul, D.R. in Polymer Blends and Mixtures, edited by Walsh, D.J., Higgins, J.S. and Maconnachie, A. (Martinus Nijhoff Publishers, Dordrect/Boston/Lancaster, 1985), pp. 420.Google Scholar
9. Platzer, N.A.J. (ed.), Multicomponent Polymer Systems, Adv. Chem. Ser. 22 (1971).Google Scholar
10. Sperling, L.H. (ed.) Recent Advances in Polymer Blends. Grafts and Blocks, Plenum Press Publishers, New York (1974).Google Scholar
11. Manson, J.A. and Sperling, L.H., Polymer Blends and Composites, Plenum Press Publishers, New York (1976).Google Scholar
12. Klempner, D. and Frisch, K.C. (eds.), Polymer Alloys: Blends. Blocks. Grafts and Interpenetrating Networks, Plenum Press Publishers, New York (1977).Google Scholar
13. Paul, D.R. and Newman, S. (eds.), Polymer Blends, Vols. I and II, Academic Press Publishers, New York (1978).Google Scholar
14. Cooper, S.L. and Estes, G.M. (eds.), Multiphase Polymers, Adv. Chem. Ser. 176 (1979).Google Scholar
15. Klempner, D. and Frisch, K.C. (eds.), Polymer Alloys II, Plenum Press Publishers, New York (1980).Google Scholar
16. Paul, D.R. and Barlow, J.W., Polymer Blends (or Alloys), J. Macromol. Sci-Rev. Macromol. Chem. C18, 109 (1980).Google Scholar
17. Barlow, J.W. and Paul, D.R., Ann. Rev. Mater. Sci. 11, 299 (1981).Google Scholar
18. Wu, S., Polymer Interface and Adhesion, Marcel Dekker Inc Publishers, New York (1982).Google Scholar
19. Roberts, A.D. (ed.), Natural Rubber Science and Technology, Oxford University Press Publishers, Oxford/New York (1988).Google Scholar
20. Rosato, Don V., DiMattia, D.P. and Rosato, Dom. V., Designing with Plastics and Composites: A Handbook, Van Nostrand Reinhold publishers, New York (1991).Google Scholar
21. Wu, S., Polymer Interface and Adhesion (Marcel Dekker Inc Publishers, New York, 1982), pp. 359433.Google Scholar
22. Dann, J.R., J. Colloid Interface Sci. 32, 302 (1970).Google Scholar
23. Schulman, F. and Zisman, W.A., J. Colloid Sci. 7, 465 (1952).CrossRefGoogle Scholar
24. Wu, S., Polymer Interface and Adhesion (Marcel Dekker Inc Publishers, New York, 1982), p. 366.Google Scholar
25. Iyengar, Y. and Erickson, D.E., J. Appl. Polym. Sci. 11, 2311 (1967).Google Scholar
26. Krevelen, D.W. ad Hoftyzer, P.J., Properties of Polymers (Elsevier Scientific Publishing Company, Amsterdam-Oxford-New York, 1976), p. 166.Google Scholar
27. Kokta, B.V., et al., Polym. Comp. 4, 229 (1983).Google Scholar
28. Klason, C., Kubat, J. and Stromwall, H.E., Inter. J. Polymeric Mater. 10, 159 (1984).Google Scholar
29. Woodhams, R.T., Thomas, G. and Rodgers, D.K., Polym. Eng. Sci. 24, 1166 (1984).Google Scholar
30. Beshay, A.D. and Kokta, B.V., Polym. Comp. 6, 261 (1985).Google Scholar
31. Bataile, B., Ricard, L. and Sapieha, S., Polym. Comp. 10, 103 (1989).Google Scholar
32. Raj, R.G., et al., J. Appl. Polym. Sci. 37, 1089 (1989).Google Scholar
33. Yam, K.L., et al., Polym. Eng. Sci. 30, (11), 693 (1990).CrossRefGoogle Scholar
34. Bataile, P., et al., Polym. Comp. 11 301 (1990).Google Scholar
35. Raj, R.G. and Kokta, B.V., Polym. Eng. Sci. 31, 1358 (1991).Google Scholar
36. Rowell, R.M. (ed.), The Chemistry -of Solid Wood, (American Chemical Society Publishers, Washington, D.C., 1984), pp. 323400.Google Scholar
37. Nevell, T.P. and Zeronian, S.H., Cellulose Chemistry and its Applications, John Wiley & Sons Publishers, 1985), pp. 519521.Google Scholar
38. Schuerch, C. (ed.), Cellulose and Wood–Chemistry and Technology, (State University of New York Publishers, Syracuse, New York, 1988), pp. 343355 and pp. 945–961.Google Scholar