In the past two decades, the growing global demand for solar energy has spurred scientific interest in alternative technologies to conventional silicon. In particular, CuIn1-xGaxSe2 (CIGS) has emerged as a competitor. We have developed a scalable deposition technique using RF magnetron sputtering of quaternary CIGS. Notably, the resulting films do not require postselenization, reducing processing time and cost. We have fabricated devices above 10% efficiency using this approach, showing its promise as a production method for highperformance CIGS photovoltaics. However, the morphology of the sputtered CIGS layer is markedly different from conventional evaporated films; grain sizes vary through the thickness of the film, with numerous small grains dominating at the Mo/CIGS interface that then either terminate or grow in an inverted-pyramid fashion to form large, columnar grains at the CIGS/CdS interface.
To better understand the origin of this morphology, we have studied the growth behavior of the CIGS layer using a combination of atomic force microscopy and electron microscopy to observe initial nucleation and grain growth behavior of quaternary-sputtered CIGS. We also discuss the effects of interfacial layers at the Mo/CIGS interface, demonstrating a novel wetting layer that conformally coats the Mo surface.