Solid-oxide fuel cell (SOFC) performance depends greatly upon electrode design. The composite anode plays a critical role in fuel reforming, especially when hydrocarbons are included in the fuel mixture. Because direct observation of fuel reforming in a functioning SOFC is difficult, if not impossible, an alternative experimental configuration is needed to evaluate anode performance. The Separated Anode Experiment (SAE) is designed to isolate and study porous-media transport and heterogeneous reforming chemistry in SOFC anodes. Although the experiment does not incorporate a dense electrolyte membrane or a cathode, it is configured to replicate important aspects of anode behavior in a fully operational SOFC. The experiment is also designed to facilitate model-based interpretation of the results. Comparisons of two significantly different anode structures are used to illustrate the experimental and modeling capabilities.