Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T02:19:32.119Z Has data issue: false hasContentIssue false

Phase Transformation Related Conductivity Degradation of NiO Doped YSZ: An In-situ Micro-Raman Analysis

Published online by Cambridge University Press:  10 May 2012

Haruo Kishimoto
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Keiji Yashiro
Affiliation:
Tohoku University, LAMR2 bldg., 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Taro Shimonosono
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Manuel E. Brito
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Katsuhiko Yamaji
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Teruhisa Horita
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Harumi Yokokawa
Affiliation:
National Institute of Advanced Industrial Science and Technology (AIST) AIST Central No. 5, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8565 Japan
Junichiro Mizusaki
Affiliation:
Tohoku University, LAMR2 bldg., 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 Japan
Get access

Abstract

In-situ micro Raman spectroscopy has been adopted as one of the most powerful analytical techniques with high spacial resolution under controlled atmospheres. In the present study, phase transformation of NiO doped yttria stabilized zirconia (YSZ) was monitored by in-situ micro-Raman spectroscopy. Raman spectra change caused by the phase transformation from the cubic phase to the tetragonal phase was observed for the NiO doped YSZ during annealing at a high temperature of 1173 K under reducing atmosphere.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yashiro, K., Takeda, K., Taura, T., Otake, T., Kaimai, A., Nigara, Y., Kawada, T. and Mizusaki, J., in Proc. Solid Oxide Fuel Cells VIII, Singhal, S.C. and Dokiya, M., Editors, PV 2003-7, p. 714, The Electrochemical Society Proceedings Series, Pennington, NJ (2003)Google Scholar
2. Pomfret, M. B., Owrutsky, J. C. and Walker, R. A., J. Phys. Chem. B, 110 (2006) 17305 Google Scholar
3. Brett, D.J.L., Aguiar, P., Clague, R., Marquis, A.J., Schöttl, S., Simpson, R., Brandon, N.P., J. Power Sources, 166 (2007) 112119 Google Scholar
4. Pomfret, M. B., Marda, J., Jackson, G. S., Eichhorn, B. W., Dean, A. M. and Walker, R. A., J. Phys. Chem. C, 112 (2008) 5232 Google Scholar
5. Maher, R. C., Cohen, L. F., Lohsoontorn, P., Brett, D. J. L. and Brandon, N. P., J. Phys. Chem. A, 122 (2008) 14971501 Google Scholar
6. Pomfret, M. B., Steinhurst, D. A., Kidwell, D. A. and Owrutsky, J. C., J. Power Sources, 195 (2010) 257262 Google Scholar
7. Pomfret, M. B., Owrutsky, J. C. and Walker, R. A., Annu. Rev. Anal. Chem., (2010) 151174 Google Scholar
8. Eigenbrodt, B. C., Pomfret, M. B., Steinhurst, D. A., Owrutsky, J. C. and Walker, R. A., J. Phys. Chem. C, 115 (2011) 28952903 Google Scholar
9. Nagai, M., Iguchi, F., Onodera, S., Sata, N., Kawada, T. and Yugami, H., ECS Trans., 35 (2011) 519525.Google Scholar
10. Schillera, G., Auera, C., Besslera, W., Christenna, C., Szaboa, P., Axb, H., Meierb, W., Abs. 220th ECS meeting (Boston), (2011) 1565 Google Scholar
11. Yashima, M., Ohtake, K., Kakihana, M., Arashi, H. and Yoshimura, M., J. Phys. Chem. Solids, 57, 17 (1996)Google Scholar
12. Nomura, K., Mizutani, Y., Kawai, M., Nakamura, Y. and Yamamoto, O., Solid State Ionics, 132, 235 (2000)Google Scholar
13. Hattori, M., Takeda, Y., Lee, J.-H., Ohara, S., Mukai, K., Fukui, T., Takahashi, S., Sakaki, Y. and Nakanishi, A., J. Power Sources, 131, 247 (2004)Google Scholar
14. Kishimoto, H., Sakai, N., Horita, T., Yamaji, K., Xiong, Y.-P., Brito, M. E. and Yokokawa, H., Solid State Ionics, 179, 2037 (2008)Google Scholar
15. Haering, C., Roosen, A. and Schichl, H., Solid State Ionics, 176, 253 (2005)Google Scholar
16. Butz, B., Kruse, P., Störmer, H., Gerthsen, D., Müller, A., Weber, A. and Ivers-Tiffée, E., Solid State Ionics, 177, 3275 (2006)Google Scholar
17. Coors, W.G., O’Brien, J. R. and White, J. T., Solid State Ionics, 180, 246 (2009)Google Scholar
18. Sonn, V. and Iverse-Tiffee, E., Proc. 8th Euro SOFC Forum, B1005 (2008)Google Scholar
19. Lefarth, A., Butz, B., Störmer, H., Utz, A. and Gerthsen, D., ECS Trans., 35, 1581 (2011)Google Scholar
20. Shimonosono, T., Kishimoto, H., Brito, M. E., Yamaji, K., Horita, T. and Yokokawa, H., Solid State Ionics, submitted (2011)Google Scholar
21. Kishimoto, H., Yashiro, K., Shimonosono, T., Brito, M. E., Yamaji, K., Horita, T., Yokokawa, H. and Mizusaki, J., Electrochem. Act., submitted (2011)Google Scholar