Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-27T01:35:28.165Z Has data issue: false hasContentIssue false

High water pressure - high temperature autoclave for in situ Raman study of fuel cell/electrolyser materials.

Published online by Cambridge University Press:  10 May 2012

Aneta Slodczyk
Affiliation:
LADIR, UMR7075 CNRS & UPMC, 4 Place Jussieu, Paris, 75005, France.
Oumaya Zaafrani
Affiliation:
LADIR, UMR7075 CNRS & UPMC, 4 Place Jussieu, Paris, 75005, France.
Philippe Colomban
Affiliation:
LADIR, UMR7075 CNRS & UPMC, 4 Place Jussieu, Paris, 75005, France.
Get access

Abstract

According to the recent hydrogen and methanol economy, the proton conducting materials appear very interesting as an electrolytic membrane and/or an electrode component of fuel cells, CO2/Syngas converters and water steam electrolysers. Prior to the long lifetime requirements their structural and mechanical behaviors as a function of operating condition: high temperature and high water vapor pressure, have to be well determined. Consequently, we designed the autoclave working till 620°C and 50 bars of H2O pressure equipped with a sapphire window allowing in situ Raman scattering measurements. It should be stressed that Raman scattering is an optical technique very efficient to detect both long and short range order structural modifications. The technical and scientific challenges/difficulties encountered during the studies performed on proton conducting zirconates are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Olah, G. A., Angew. Chem. Int. Ed 44, 26362639 (2005).Google Scholar
2. Ni, M., Leung, M.K.H. and Leung, D.Y.C., Int. J. Hydrogen Energy 32, 4648 (2007)Google Scholar
3. Iwahara, H., Esaka, T., Uchida, H. and Maeda, N., Solid State Ionics 3/4, 359363 (1981).Google Scholar
4. Colomban, Ph., Ed. Proton Conductors: Solids, membranes and gel – materials and devices. Cambridge University Press, Cambridge, (1992).Google Scholar
5. Colomban, Ph., Ann. Chimie Sci. Matériaux Paris 24, 118 (1999).Google Scholar
6. Norby, T., Kim, S., Yamaguchi, S. and Elliot, J. (eds.), MRS Bull., 34 [12] 923928 (2009).Google Scholar
7. Kreuer, K. D., Ann. Rev. Mater. Res. 33, 333359 (2003).Google Scholar
8. Irvine, J.T.S., Corcoran, D.J.D., Lashtabeg, A. and Walton, J.C., Solid State Ionics 154-155, 447453 (2002).Google Scholar
9. Ricote, S., Bonanos, N., Marco de Lucas, M.C. and Caboche, G., J. Power Sources 193, 189193 (2009).Google Scholar
10. Colomban, Ph., Slodczyk, A., Lamago, D., Andre, G., Zaafrani, O., Lacroix, O., Willemin, S. and Sala, B., J. Phys. Soc. Jpn 79, Suppl. A 16 (2010).Google Scholar
11. Slodczyk, A., Colomban, Ph., Willemin, S., Lacroix, O. and Sala, B., J. Raman Spectrosc. 40 513521 (2009).Google Scholar
12. Slodczyk, A., Limage, M.H., Colomban, Ph., Zaafrani, O., Grasset, F., Loricourt, J. and Sala, B., J. Raman Spectrosc. (2011) Doi: 10.1002/jrs.2968 Google Scholar
13. Slodczyk, A., Colomban, Ph., Zaafrani, O., Lacroix, O., Loricourt, J., Grasset, F. and Sala, B. Mater. Res. Soc. Symp. Proc. 1309 3944 (2011).Google Scholar
14. Slodczyk, A., Dabrowski, B., Malikova, N. and Colomban, Ph., Mater. Res. Soc. Symp. Proc. 1311 GG0625 (2010).Google Scholar
15. Animitsa, I., Denisova, T., Neiman, A., Nepryahin, A., Kochetova, N., Zhuravlev, N. and Colomban, Ph., Solid State Ionics 162-163, 7381 (2003).Google Scholar
16. Slodczyk, A., Colomban, Ph. and Pham-Thi, M., J. Phys. Chem. Solids 69 25032513 (2008).Google Scholar
17. Slodczyk, A., Tran, C. and Colomban, Ph., Mater. Res. Soc. Symp. Proc. 1384 (2012), accepted.Google Scholar
18. PCT Patent WO 2008/152317 A2 (18-12-2008).Google Scholar