This paper deals with degenerate Fermi–Dirac plasmas in which transport is by quasi-particles that form a dilute gas described by the Boltzmann equation. The off-equilibrium part of the distribution function of each species is estimated by expanding it in terms of the fluid velocity of the species, relative to the plasma, and its relative heat flux vector. Expressions for the frictional forces acting between the species, consisting of a relaxation-model force and a thermal force, are obtained. These are used in a plasma dissipation formalism, yielding, for ternary partially ionized plasmas, a generalized Ohm law and an ambipolar diffusion law. The results are applied to neutron star matter, consisting of thermally ultra-relativistic electrons and non-relativistic protons and neutrons, with the mass density dominated by the neutrons. The dissipation formalism is used to obtain an expression for the magnetic force on this material.