Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-26T06:58:27.395Z Has data issue: false hasContentIssue false

The ponderomotive force of an electromagnetic wave in a collisional plasma

Published online by Cambridge University Press:  13 March 2009

M. L. Sawley
Affiliation:
Centre de Recherches en Physique des Plasmas, Association Euratom, Confédération Suisse, Ecole Polytechnique Fédérale de Lausanne, 21, av. des Bains, CH-1007Lausanne/Switzerland

Abstract

The nonlinear propagation of a circularly polarized, electromagnetic wave in a collisional, infinite, magnetized plasma is considered. The presence of collisions leads to spatial variation in the amplitude of the wave field which gives rise to a time-independent ponderomotive force. The ponderomotive potential for a left (right) circularly polarized wave attains a maximum at the ion (electron) cyclotron frequency. In the vicinity of the cyclotron frequency it is shown to be always positive. A decrease in both the particle density and the real and imaginary parts of the complex wavenumber is shown to result from the effect of the ponderomotive force.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Consoli, T. & Hall, R. B. 1963 Nucl. Fusion, 3, 237.CrossRefGoogle Scholar
Eubank, H. P. 1969 Phys. Fluids, 12, 234.CrossRefGoogle Scholar
Fader, W. J., Jong, R. A., Stufflebeam, J. H. & Sziklas, E. A. 1981 Phys. Rev. Lett. 46, 999.CrossRefGoogle Scholar
Ferron, J. R., Hershkowitz, N., Breun, R. A., Golovato, S. N. & Goulding, R. 1983 Phys. Rev. Lett. 51, 1955.CrossRefGoogle Scholar
Festeau-Barrioz, M. C. & Sawley, M. L. 1984 Lausanne Report LRP 245/84.Google Scholar
Festeau-Barrioz, M. C. & Weibel, E. S. 1980 Phys. Fluids, 23, 2045.CrossRefGoogle Scholar
Ginzburg, V. L. 1961 Propagation of Electromagnetic Waves in Plasma. Gordon and Breach.Google Scholar
Motz, H. & Watson, C. J. H. 1967 Adv. Electron. Electron Phys. 23, 153.CrossRefGoogle Scholar
Roberts, C. S. & Buchsbaum, S. J. 1964 Phys. Rev. A 135, 381.CrossRefGoogle Scholar
Statham, G. & Ter Haar, D. 1983 Plasma Phys. 25, 681.CrossRefGoogle Scholar
Yasaka, Y. & Itatani, R. 1984 Nucl. Fusion, 24, 445.CrossRefGoogle Scholar