Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T04:29:08.409Z Has data issue: false hasContentIssue false

Experimental results on trapping a gun plasma in a toroidal magnetic cusp experiment

Published online by Cambridge University Press:  13 March 2009

P. A. Pincosy
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
B. R. Myers
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
M. A. Levine
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
B. Feinberg
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
R. A. Niland
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720
L. Soroka
Affiliation:
Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

Abstract

A start-up method for producing a plasma in the bi-cusp field configuration of a toroidal magnetic cusp (TORMAC) is described. The method uses the radial injection and trapping of a toroidal gun plasma. Measurements of an injected plasma with a velocity of 17 μsec–1 and 4·5 × 1018 particles is presented. The plasma was observed to be stopped and trapped in an equilibrium position. A well-defined outer boundary remained stationary for 20 μsec. Particle flux distribution emanating from the cusp field lines defined a sheath having a width of 1–1·5 ion gyroradii in the poloidial field. This translates to a narrow outer boundary and a broad inner boundary based on the gradient of the poloidial field at the two radial positions. Measurements of Thomson scattering and interferometry give a Te of 15eV, a 15μsec density decay time, and a 5μsec energy decay time. These results show that this injection and trapping method is successful, and thus a higher gun plasma energy combined with a flux conserving barrier may lead to higher temperatures for testing containment in TORMAC.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Berkowitz, J., Grad, H. & Rubin, H. 1958 Proceedings of 2nd United Nations Conference on Peaceful Uses of Atomic Energy, Geneva, vol. 31, p. 171.Google Scholar
Boozer, A. H. & Levine, M. A. 1973 Phys. Rev. Lett. 31, 1287.CrossRefGoogle Scholar
Brown, I. G., Feinberg, B., Kunkel, W. B., Levine, M. A., Niland, R. A., Shaw, R. S. & Vaucher, B. G. 1982 Phys. Fluids, 25, 79.CrossRefGoogle Scholar
DeHoffman, F. & Teller, E. 1950 Phys. Rev. 80, 692.CrossRefGoogle Scholar
Feinberg, B., Niland, R. A., Coonrod, J. & Levine, M. A. 1983 Report LBL-10070.Google Scholar
Gallagher, C. C., Combes, L. S. & Levine, M. A. 1970 Phys. Fluids, 13, 1617.CrossRefGoogle Scholar
Greenwald, M. & Smith, W. I. B. 1977 Appl. Optics, 16, 587.CrossRefGoogle Scholar
Haines, M. G. 1977 Nucl. Fusion, 17, 811.CrossRefGoogle Scholar
Jackson, J. D. 1962 Classical Electrodynamics. Wiley.Google Scholar
Jackson, J. D. 1957 Proc. Phys. Soc. Lond. B 70, 6.Google Scholar
Myers, B. R., Levine, M. A. & Pincosy, P. A. 1979 Report LBL-9507.Google Scholar
Myers, B. R., Levine, M. A. & Shaw, R. S. 1981 Rev. Sci. Instr. 1187.CrossRefGoogle Scholar
Osher, J. E. 1962 Phys. Rev. Lett. 8, 305.CrossRefGoogle Scholar
Spalding, I. J. 1971 Advances in Plasma Physics (ed. Simon, A. and Thompson, W. B.), vol. 4, p. 79. Wiley.Google Scholar
Spalding, I. J., Eden, M. J., Phelp, A. D. R. & Allen, K. T. 1969 Proceedings of 3rd International Conference on Plasma Physics and Controlled Fusion, Novosibirsk, vol. 2, p. 639. IAEA.Google Scholar
Tidman, D. A. & Krall, N. A. 1971 Shock Waves in Collisionless Plasma. Wiley-Interscience.Google Scholar
Vella, M. C., Feinberg, B. & Niland, R. 1979 Report UCID-8095, LBL.Google Scholar
Vlases, G. C. 1967 Phys. Fluids, 10, 2351.CrossRefGoogle Scholar
Watteau, J. P. H. 1961 Phys. Fluids, 4, 6076.CrossRefGoogle Scholar