Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T04:36:53.487Z Has data issue: false hasContentIssue false

Dissipation by thermal forces in quantum plasmas

Published online by Cambridge University Press:  13 March 2009

R. R. Burman
Affiliation:
Department of Physics, University of Western Australia, Nedlands, W.A. 6009, Australia
D. E. McClelland
Affiliation:
Department of Physics, University of Western Australia, Nedlands, W.A. 6009, Australia

Abstract

This paper deals with degenerate Fermi–Dirac plasmas in which transport is by quasi-particles that form a dilute gas described by the Boltzmann equation. The off-equilibrium part of the distribution function of each species is estimated by expanding it in terms of the fluid velocity of the species, relative to the plasma, and its relative heat flux vector. Expressions for the frictional forces acting between the species, consisting of a relaxation-model force and a thermal force, are obtained. These are used in a plasma dissipation formalism, yielding, for ternary partially ionized plasmas, a generalized Ohm law and an ambipolar diffusion law. The results are applied to neutron star matter, consisting of thermally ultra-relativistic electrons and non-relativistic protons and neutrons, with the mass density dominated by the neutrons. The dissipation formalism is used to obtain an expression for the magnetic force on this material.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aliyevskiy, M. Y. & Zhdanov, V. M. 1963 Zh. Prikl. Mekh. Tekhn. Fiz. No. 5, p. 11.Google Scholar
Arons, J. & Spencer, R. G. 1978 Astrophys. J. 220, 640.CrossRefGoogle Scholar
Baym, G., Pethick, C. & Pines, D. 1969 a Nature, 224, 673.CrossRefGoogle Scholar
Baym, G., Pethick, C. & Pines, D. 1969 b Nature, 224, 674.CrossRefGoogle Scholar
Baym, G. & Pethick, C. 1979 Ann. Rev. Astr. Astrophys. 17, 415.CrossRefGoogle Scholar
Braginskii, S. I. 1965 Reviews of Plasma Physics (ed. M. A. Leontovich), vol. 1, p. 205.Google Scholar
Burman, R. R. 1978 Czech. J. Phys. B 28, 1221.CrossRefGoogle Scholar
Burman, R. R., Byrne, J. C. & Buckingham, M. J. 1976 Czech. J. Phys. B 26, 831.CrossRefGoogle Scholar
Chandrasekhar, S. 1958 An Introduction to the Study of Stellar Structure. Dover.Google Scholar
Chapman, S. & Cowling, T. G. 1970 The Mathematical Theory of Non-Uniform Gases (3rd edn). Cambridge University Press.Google Scholar
Cunningham, R. E. & Williams, R. J. J. 1980 Diffusion in Gases and Porous Media. Plenum.CrossRefGoogle Scholar
Demetriades, S. T. & Aegyropoulos, G. S. 1966 Phys. Fluids, 9, 2136.CrossRefGoogle Scholar
Easson, I. 1976 Nature, 263, 486.CrossRefGoogle Scholar
Easson, I. 1981 Astrophys. J. 246, 526.CrossRefGoogle Scholar
Easson, I. & Pethick, C. J. 1979 Astrophys. J. 227, 995.CrossRefGoogle Scholar
Flowers, E. & Itoh, N. 1979 Astrophys. J. 230, 847.CrossRefGoogle Scholar
Grad, H. 1949 a Commun. Pure Appl. Math. 2, 325.CrossRefGoogle Scholar
Grad, H. 1949 b Commun. Pure Appl. Math. 2, 331.CrossRefGoogle Scholar
Landau, L. D. 1957 Soviet Phys. JETP, 3, 920.Google Scholar
Landau, L. D. & Lifschitz, E. M. 1969 Statistical Physics (2nd edn). Addison-Wesley.Google Scholar
McClelland, D. E. & Burman, R. R. 1984 J. Plasma Phys. 31, 47.CrossRefGoogle Scholar
Rindler, W. 1982 Introduction to Special Relativity. Oxford University Press.Google Scholar
Synge, J. M. 1957 The Relativistic Gas. North-Holland.Google Scholar
Tsuruta, S. 1979 Phys. Rep. 56, 237.CrossRefGoogle Scholar
Zhdanov, V., Kagan, Yu. & Sazykin, A. 1962 Soviet Phys. JETP, 15, 596.Google Scholar