Severe space weather conditions affect the performance of numerous modern technical systems, causing problems not only for national and global economies, but for everyday life as well. Satellite navigation systems are particularly vulnerable, despite the fact that systematic monitoring of space weather in general is still performed on a global scale. Space weather effect correction models applied within the standard satellite positioning service are not capable of tackling the effects of severe space weather conditions and local ionospheric characteristics. Severe space weather effects on the GPS ionospheric delay are intensely studied in order to provide advanced models of the space weather effects on GPS positioning performance.
Here one study of severe space weather conditions and its consequences on the GPS ionospheric delay in Croatia is presented. The study takes advantage of the availability of the space weather indices and the GPS pseudorange measurements (taken at the reference site at Osijek, Croatia) related to a major severe space weather event lasting from early October 2003 to late November 2003. This paper presents the reconstruction of the severe space weather conditions and the development of ionospheric disturbances. Based on these reconstructions, the dynamics of the GPS ionospheric delay has been derived. The comparison of actual (measured) and modelled (according to standard GPS model) GPS ionospheric delay has been performed, with the aims of identifying actual behaviour of GPS ionospheric delay and examining the ability of standard (Klobuchar) GPS model to describe the GPS ionospheric delay in severe space weather conditions. Two interesting experimental models derived from the data analysis are presented, addressing the direct relations between the GPS ionospheric delay and the parameters of space weather activity (sunspot number and solar flux), as observed at the reference station Osijek, Croatia.
The paper concludes with the plans for further research activities related to the regional GPS ionospheric delay model development for south-eastern Europe.