Geophysical mass flows such as debris flows, dense pyroclastic flows and snow avalanches can self-channelize on shallow slopes. The confinement afforded by formed levees helps to maintain the flow depth, and hence mobility, allowing self-channelized flows to run out significantly farther than unconfined, spreading flows. Levee formation and self-channelization are strongly associated with particle-size segregation, but can also occur in monodisperse flows. This paper uses the monodisperse depth-averaged theory of Rocha et al. (J. Fluid Mech., vol. 876, 2019, pp. 591–641), which incorporates a hysteretic friction law and second-order depth-averaged viscous terms. Both of these are vital for the formation of a travelling wave that progressively deposits a pair of levees just behind the front. The three-dimensional velocity field is reconstructed in a frame moving with the front assuming Bagnold flow. This enables a bidisperse particle-size segregation theory to be used to solve for the large and small particle concentrations and particle paths in three-dimensions, for the first time. The model shows that the large particles tend to segregate to the surface of the flow, forming a carapace that extends over the centre of the channel, as well as along the external sides and base of the levee walls. The small particles segregate downwards, and are concentrated in the main channel and in the inner levee walls. This supports the contention that a low-friction channel lining provides a secondary mechanism for run-out enhancement. It is also shown that the entire theory scales with particle diameter, so experiments with millimetre-sized particles provide important insights into geophysical-scale flows with boulders and smaller rock fragments. The model shows that self-channelization does not need particle-size segregation to occur, but supports the hypothesis that particle-size segregation and the associated frictional feedback can significantly enhance both the flow mobility and the levee strength.