The transition Reynolds number and the turbulent Reynolds number induced by a sinusoidally fluctuating free stream have been determined experimentally. The oscillating flow was produced in a closed-circuit wind tunnel by means of a rotating shutter valve which had a range of frequencies from 4 to 125 c/s corresponding to a range of the dimensionless frequency parameter, $\omega v |U^2_\infty$, of 2·29 × 10−6 to 4·49 × 10−5. The dimensionless amplitude parameter, $\Delta U|U_\infty$, could be adjusted by means of shutter blades of various widths from a value of 0.0775 to 0.667.
Flows in both the free stream and the boundary layer were monitored simultaneously by means of two transistorized constant-temperature hot-wire anemometers. The transition Reynolds number, the turbulent Reynolds number and turbulent intermittency factor, γ, were determined from the velocity-time traces recorded on a dual-channel oscilloscope.
It was found that the transition Reynolds number depends only on the amplitude of the oscillations and that the dimensionless transition length is a function only of the frequency. The time-space distribution of turbulent bursts in the transition region indicates that the location as well as duration of bursts is quite regular and closely tied to the fluctuations of free-stream velocity, confirming the analysis of Greenspan & Benney.