Middle Cambrian and Caradoc metabentonites and associated mudrocks are described from the northern part of the Welsh Lower Palaeozoic basin. They occur in areas of slight deformation, distant from thick piles of contemporaneous volcanics. The < 2 μm fraction from anchizonal Middle Cambrian metabentonites consists dominantly of 1Md micas (with up to 5% randomly interstratified smectite) with lesser 1M and 2M1 muscovite, corrensite, quartz, chlorite and kutnohorite. Interbedded mudrocks are similar but contain, additionally, minor paragonite and regular (6:4) paragonite-muscovite. Late diagenetic grade Caradoc bentonite consists of rectorite, pyrophyllite and small amounts of chlorite. Interbedded mudrocks are similar but contain, additionally, 1Md mica with up to 10% smectite interlayers, minor kaolinite and quartz.
Metabentonites contain high concentrations of the trace elements Ce, La, Hf, Nb, Ta, Th, Y and Zr in comparison with associated mudrocks. Discriminant diagrams indicate derivation from trachyandesite–dacite–rhyolite magmas in a within-plate setting. Major element variations in Cambrian metabentonites compare closely with those described in Silurian examples whereas the Caradoc metabentonite is closely similar to rhyolitic tuffs in the Caradoc Llewelyn Volcanic Group.
Both geochemical and field evidence indicate that whereas Middle Cambrian mudrocks were derived from bentonitic material adulterated variably by a terrigenous input. Lower Cambrian mudrocks were derived from a strongly depleted source such as basic Mona Complex rocks. Geochemical and field evidence suggest Caradoc mudrocks southeast of the Aber–Dinlle fault are largely volcanogenic; and the geological setting of Tremadoc, Arenig and Llanvirn mudrocks demands some volcanogenic input.
The Caradoc volcanic succession of Snowdonia is represented by a single bentonite northwest of the Aber–Dinlle fault. The fault system was either a highly effective contemporaneous barrier or, more probably, a site of post-Caradoc transcurrent movement.