Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-24T01:08:23.290Z Has data issue: false hasContentIssue false

A Cretaceous Neo-Tethyan carbonate margin in Argolis, southern Greece

Published online by Cambridge University Press:  01 May 2009

Peter D. Clift
Affiliation:
Grant Institute, Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland, U.K.
Alastair H. F. Robertson
Affiliation:
Grant Institute, Department of Geology and Geophysics, University of Edinburgh, West Mains Road, Edinburgh EH9 3JW, Scotland, U.K.

Abstract

The Argolis Peninsula, southern Greece, is believed to form part of a Pelagonian microcontinent located between two oceanic basins, the Pindos to the west and theVardar to the east, in Triassic to Tertiary time. In eastern Argolis, two important units are exposed: (i) the Ermioni Limestones cropping out in the southwest; (ii) the Poros Formation, observed on an offshore island in the northeast, and on the adjacent mainland. Both these units comprise late Cretaceous (Aptian-Maastrichtian) pelagic limestones, calciturbidites, lenticular matrix- and clast-supported limestone conglomerates and slump sheets. However, the Poros Formation is distinguished from the Ermioni Limestones by the presence of bituminous micritic limestones and an increasing proportion of shale up sequence. These successions are deep-water slope carbonates that once formed the southeast-facing passive margin of the Pelagonian platform (Akros Limestone). Beyond this lay a late Cretaceous ocean basin in the Vardar Zone. This ocean was consumed in an easterly-dipping subduction zone in latest Cretaceous (?) to early Tertiary time, giving rise to an accretionary complex (Ermioni Complex). During early Tertiary (Palaeocene-Eocene) time the passive continental margin (Pelagonian Zone) collided with the trench and accretionary complex to the east. As the suture tightened, former lower-slope carbonates (Ermioni Limestones) were accreted to the base of the over-riding thrust sheets and emplaced onto the platform. Farther west, bituminous upper slope carbonates (Poros Formation) flexurally subsided and passed transitionally upwards into calcareous flysch and olistostromes in a foreland basin. These sediments were then overridden by the emplacing thrust stack and themselves underplated. Late-stage high-angle faulting then disrupted the tectonostratigraphy, in places juxtaposing relatively high and low structural levels of the complex.

Type
Articles
Copyright
Copyright © Cambridge University Press 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aubouin, J., Bonneau, M., Celet, P., Clément, B., Degardin, J. M., Dercourt, J., Ferrière, J., Fleury, J. J., Guernet, C., Maillot, H., Mania, J., Mansy, J. L., Terry, J., Thiébault, P., Tsoflias, P. & Verrieux, J. J. 1970. Contribution à la géologie des Hellénides: Le Gavrovo, Le Pinde et la Zone Ophiolitique Subpélagonienne. Annales dela Société Géologique du Nord 90, 277306Google Scholar
Aubouin, J. & Dercourt, J. 1962. Sur la présence de la série du Pinde à l'extreme sud de I'Argolide (Grèce). Société Géologique de France, Fascicule 6. 181–3.Google Scholar
Bachmann, G. H. & Risch, H. 1978. Late Mesozoic and Paleogene development of the Argolis peninsula (Peloponnesos). In Alps, Apennines and Hellenides (eds. Closs, H., Roeder, D. H. and Schmidt, K.), pp. 424–7. Stuttgart: E. Schweizerbart'sche Verlagsbuchhandlung.Google Scholar
Baumgartner, P. O. 1985. Jurassic sedimentary evolution and nappeemplacement in the Argolis Peninsula (Peloponnesus, Greece). Mémoire de la Société Helvétique pour la Science Naturelle, 111 pp.CrossRefGoogle Scholar
Berger, W. H. 1974. Deep-sea sedimentation. In The Geology of Continental Margins (eds. Burke, C. A. and Drake, C. L.), pp.213–41. New York: Springer-Verlag.CrossRefGoogle Scholar
Bernoulli, D. & Laubscher, H. 1972. The palinspastic problem of the Hellenides. Eclogae Geologicae Helveticae 65, 107–18.Google Scholar
Bliefnick, D. M., Robertson, A. H. F. & Sheridan, R. E. 1983. Deposition and provenance of Miocene intraclastic chalks Blake-Bahama basin, western north Atlantic. In Initial Reports of the Deep Sea Drilling Project, Leg 76 (eds. Sheridan, R. E., Gradstein, F. M. et al. ), pp. 727–48. Washington: U.S. Government Printing Office.Google Scholar
Blenkinsop, T. G. 1988. Definition of low-grade metamorphic zones using illite crystallinity. Journal of Metamorphic Geology 6, 623–36CrossRefGoogle Scholar
Bouma, A. H. 1962. Sedimentology of Some Flysch Deposits: A Graphic Approach to Fades Interpretation Amsterdam: Elsevier, 168 pp.Google Scholar
Cawood, P. A., Williams, H., O'Brien, S. J. & O'Niell, P. P. 1988. A Geologic Cross-Section of the Appalachian Orogen. Field Trip Al, Guidebook, Geological Association of Canada, Annual Convention, St John's, Newfoundland, Canada, 140.Google Scholar
Clift, P. D. & Robertson, A. H. F. 1989. Evidence of alate Mesozoic ocean basin and subduction/accretion in the southern Greek Neo-Tethys. Geology 17, 559–63.2.3.CO;2>CrossRefGoogle Scholar
Clift, P. D. & Robertson, A. H. F. 1990. Deep-water basins with the Mesozoic carbonate platform of Argolis, Greece. Journal of the Geological Society of London (in press).CrossRefGoogle Scholar
Decrouez, D. 1977 a. Etude stratigraphique du Crétaceacute; d'Argolide (Péloponn`se septentrional, Grèce). 1. Introduction générale et la formation de l'Akros (Domaine ophiolitique externe). Notes du laboratoire de Paléontologie de l' Université de Genève, Fascicule 1, No. 1–7, 8 pp.Google Scholar
Decrouez, D. 1977 b. Etude stratigraphique du Crétacé d'Argolide (Péloponnèse septentrional, Grèce) 3. La Série du Cap Kastri en Argolide méridionale et conclusions générales. Notes du Laboratoire de Paléontologie de l'Université de Genève, Fascicule 1, No.1–7, 4 pp.Google Scholar
Frey, M. 1987. Very low-grade metamorphism of clastic sedimentaryrocks. In Low Temperature Metamorphism (ed. Frey, M.), pp. 958. Glasgow: Blackie, 351 pp.Google Scholar
Harbury, N. A. & Hall, R. 1988. Mesozoic extensional history of the southern Tethyan continental margin in the Aegean. Journal of the Geological Society of London 145, 283301.CrossRefGoogle Scholar
Kissel, C. & Laj, C. 1988. The Tertiary geodynamic evolution of the Aegean arc: a palaeomagnetic reconstruction. Tectonophysics 146, 183201.CrossRefGoogle Scholar
Middleton, G. V. & Hampton, M. A. 1976. Subaqueous sediment transport and deposition by sediment gravity flows. In Marine Sediment Transport and Environmental Management (eds. Stanley, D. J. and Swift, D. J. P.), pp. 197218. New York: John Wiley.Google Scholar
Moussoulos, L. 1958. Les gisements pyriteux du district minier d'Hermione. Etude sur leur géologie et minéralogie. Le problèmedeleur genèse. Annales Géologiques des Pays Helléniques, 1st series, IX, 119–64.Google Scholar
Mullins, H. T. & Neumann, A. C. 1979. Deep carbonate bank margin structure and sedimentation in the northern Bahamas. In Geology of Continental Slopes (eds. Doyle, L. J. and Pilkey, O. H.), pp. 165–92. Society of Economic Paleontologists and Mineralogists, Special Publication no. 27.CrossRefGoogle Scholar
Mutti, E. & Ricci-Lucchi, F. 1972. Le torbiditi dell'Appennino settentrionale: introduzione all'analisi di facies. Memoriedella Società Geologica Italiana 11, 161–99.Google Scholar
Mutti, E. & Ricci-Lucchi, F. 1975. Turbidite facies and facies associations. In Examples of Turbidite Facies and Associations from Selected Formations of the Northern Appennines (eds. Mutti, E. et al. ), pp. 2136. Field trip guidebook A-11, 9th International Sedimentological Congress, Nice, France.Google Scholar
Philippson, A. 1892. Der Peloponnes-Versuch einer Landeskunde auf geologischer Grundlage. Berlin: R. Freidlander und Sohn, 642 pp.Google Scholar
Renz, C., Liatsikas, N. & Paraskevaidis, I. 1955. Geological Map of Greece at 1:500000 (2 sheets). Athens: Institute of Geology and Subsurface Research.Google Scholar
Robertson, A. H. F. 1987. The transition from a passive margin toan Upper Cretaceous foreland basin related to ophiolite emplacement in the Oman Mountains. Bulletin of the Geological Society of America 99, 633–53.2.0.CO;2>CrossRefGoogle Scholar
Robertson, A. H. F. & Dixon, J. E. 1984. Introduction:aspects of the geological evolution of the Eastern Mediterranean. In The Geological Evolution of the Eastern Mediterranean (eds. Dixon, J. E. and Robertson, A. H. F.), pp. 174. Special Publication of the Geological Society of London no. 17.Google Scholar
Robertson, A. H. F., Varnavas, S. P. & Panagos, A. G. 1987. Ocean ridge origin and tectonic setting of Mesozoic sulphide and oxide deposits of the Argolis Peninsula of the Peloponnesus, Greece. Sedimentary Geology 53, 132.CrossRefGoogle Scholar
Robertson, A. H. F. & Woodcock, N. H. 1982. Sedimentary history of the south-western segment of the Mesozoic-Tertiary Antalya continental margin, south-west Turkey. Eclogae Geologicae Helveticae 75, 517–62.Google Scholar
Schlager, W. & Chermak, A. 1979. Sediment facies of platform-basin transition, Tongue of the Ocean, Bahamas. In Geology of ContinentalSlopes (eds. Doyle, L. J. and Pilkey, O. H.), pp. 193208. Society of Economic Paleontologists and Mineralogists, Special Publication 27.Google Scholar
Smith, A. G. 1977. Othris, Pindos and Vourinos ophiolites and the Pelagonian ZonePilkey. Proceedings of the 6th Colloquium of Aegean Geology, Athens, 1977, pp. 1369–74.Google Scholar
Smith, A. G., Hynes, A. J., Menzies, M., Nisbet, E. G., Price, I., Welland, M. J. P. & Ferrière, J. 1975. The stratigraphy of the Othris Mountains, eastern central Greece: a deformedMesozoic continental margin sequence. Eclogae Geologicae Helveticae 68, 463–81.Google Scholar
Suesskoch, W., Bannert, D., Kalkreuth, W., Walliner, P. & Strauss, M. 1984. Geological Map of Greece, Methana Sheet (1:50000). Athens: Institute of Geological and Mineral Exploration (IGME).Google Scholar
Turnell, H. B. 1988. Mesozoic evolution of Greek microplates frompaleomagnetic measurements. Tectonophysics 155, 307–16.CrossRefGoogle Scholar
Vrielynck, B. 1978. Données nouvelles sur les zones internes du Péloponnèse. Les massifs à Test de la Plaine d'Argos (Grèce). Annales Géologiques des pays Helléniques 29, 440–62.Google Scholar
Vrielynck, B. 1982. Evolution paléogéographique et structurale de la presqu'île d'Argolide (Grèce). Revue de Géologic Dynamique et de Géographie Physique 23, 277–88.Google Scholar
Watts, K. F. & Garrison, R. E. 1986. Sumeini Group, Oman – Evolution of a Mesozoic carbonate slope on a south Tethyan continental margin. Sedimentary Geology 48, 107–68.CrossRefGoogle Scholar
Weaver, C. E. 1960. Possible uses of clay minerals in search for oil. Bulletin of the American Association of Petroleum Geologists 44, 1505–18.Google Scholar
Woodcock, N. H. 1976. Structural style in slump sheets: Ludlow Series, Powys, Wales. Journal of the Geological Society of London 132, 399415.CrossRefGoogle Scholar