We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
This journal utilises an Online Peer Review Service (OPRS) for submissions. By clicking "Continue" you will be taken to our partner site
https://cup.msp.org/submit_new.php?jpath=pi.
Please be aware that your Cambridge account is not valid for this OPRS and registration is required. We strongly advise you to read all "Author instructions" in the "Journal information" area prior to submitting.
To save this undefined to your undefined account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your undefined account.
Find out more about saving content to .
To send this article to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study higher uniformity properties of the Möbius function $\mu $, the von Mangoldt function $\Lambda $, and the divisor functions $d_k$ on short intervals $(X,X+H]$ with $X^{\theta +\varepsilon } \leq H \leq X^{1-\varepsilon }$ for a fixed constant $0 \leq \theta < 1$ and any $\varepsilon>0$.
More precisely, letting $\Lambda ^\sharp $ and $d_k^\sharp $ be suitable approximants of $\Lambda $ and $d_k$ and $\mu ^\sharp = 0$, we show for instance that, for any nilsequence $F(g(n)\Gamma )$, we have
$$\begin{align*}\sum_{X < n \leq X+H} (f(n)-f^\sharp(n)) F(g(n) \Gamma) \ll H \log^{-A} X \end{align*}$$
when $\theta = 5/8$ and $f \in \{\Lambda , \mu , d_k\}$ or $\theta = 1/3$ and $f = d_2$.
As a consequence, we show that the short interval Gowers norms $\|f-f^\sharp \|_{U^s(X,X+H]}$ are also asymptotically small for any fixed s for these choices of $f,\theta $. As applications, we prove an asymptotic formula for the number of solutions to linear equations in primes in short intervals and show that multiple ergodic averages along primes in short intervals converge in $L^2$.
Our innovations include the use of multiparameter nilsequence equidistribution theorems to control type $II$ sums and an elementary decomposition of the neighborhood of a hyperbola into arithmetic progressions to control type $I_2$ sums.