Let (Bi) be a sequence of measurable sets in a probability space (X,ℬ,μ) such that ∑ ∞n=1μ(Bi)=∞. The classical Borel–Cantelli lemma states that if the sets Bi are independent, then μ({x∈X:x∈Bi infinitely often})=1. Suppose (T,X,μ) is a dynamical system and (Bi) is a sequence of sets in X. We consider whether Tix∈Bi infinitely often for μ almost every x∈X and, if so, is there an asymptotic estimate on the rate of entry? If Tix∈Bi infinitely often for μ almost every x, we call the sequence (Bi) a Borel–Cantelli sequence. If the sets Bi :=B(p,ri) are nested balls of radius ri about a point p, then the question of whether Tix∈Bi infinitely often for μ almost every x is often called the shrinking target problem. We show, under certain assumptions on the measure μ, that for balls Bi if μ(Bi)≥i−γ, 0<γ<1, then a sufficiently high polynomial rate of decay of correlations for Lipschitz observables implies that the sequence is Borel–Cantelli. If μ(Bi)≥C1 /i, then exponential decay of correlations implies that the sequence is Borel–Cantelli. We give conditions in terms of return time statistics which quantify Borel–Cantelli results for sequences of balls such that μ(Bi)≥C/i. Corollaries of our results are that for planar dispersing billiards and Lozi maps, sequences of nested balls B(p,1/i) are Borel–Cantelli. We also give applications of these results to a variety of non-uniformly hyperbolic dynamical systems.