Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T10:25:59.541Z Has data issue: false hasContentIssue false

Diophantine approximation by orbits of expanding Markov maps

Published online by Cambridge University Press:  07 February 2012

LINGMIN LIAO
Affiliation:
LAMA, CNRS UMR 8050, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France (email: [email protected], [email protected])
STÉPHANE SEURET
Affiliation:
LAMA, CNRS UMR 8050, Université Paris-Est Créteil, 61 Avenue du Général de Gaulle, 94010 Créteil Cedex, France (email: [email protected], [email protected])

Abstract

In 1995, Hill and Velani introduced the ‘shrinking targets’ theory. Given a dynamical system ([0,1],T), they investigated the Hausdorff dimension of sets of points whose orbits are close to some fixed point. In this paper, we study the sets of points well approximated by orbits {Tnx}n≥0, where Tis an expanding Markov map with a finite partition supported by [0,1]. The dimensions of these sets are described using the multifractal properties of invariant Gibbs measures.

Type
Research Article
Copyright
©2012 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Baladi, V.. Positive Transfer Operators and Decay of Correlations (Advanced Series in Nonlinear Dynamics, 16). World Scientific, River Edge, NJ, 2000.Google Scholar
[2]Barral, J., Ben Nasr, F. and Peyrière, J.. Comparing multifractal formalisms: the neighboring boxes conditions. Asian J. Math. 7 (2003), 149165.Google Scholar
[3]Barral, J. and Seuret, S.. Heterogeneous ubiquitous systems in ℝd and Hausdorff dimension. Bull. Braz. Math. Soc. (N.S.) 38(3) (2007), 467515.Google Scholar
[4]Barral, J. and Seuret, S.. Ubiquity and large intersections properties under digit frequencies constraints. Math. Proc. Cambridge Philos. Soc. 145(3) (2008), 527548.CrossRefGoogle Scholar
[5]Barreira, L., Pesin, Y. and Schmeling, J.. On a general concept of multifractality: multifractal spectra for dimensions, entropies, and Lyapunov exponents. Multifractal rigidity. Chaos 7 (1997), 2738.Google Scholar
[6]Beresnevich, V. and Velani, S.. A Mass Transference Principle and the Duffin–Schaeffer conjecture for Hausdorff measures. Ann. of Math. (2) 164(3) (2006), 971992.Google Scholar
[7]Besicovitch, A. S.. Sets of fractional dimension (IV): on rational approximation to real numbers. J. Lond. Math. Soc. 9 (1934), 126131.Google Scholar
[8]Bowen, R.. Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms. Springer, Berlin, 1975.Google Scholar
[9]Brown, G., Michon, G. and Peyrière, J.. On the multifractal analysis of measures. J. Stat. Phys. 66 (1992), 775790.CrossRefGoogle Scholar
[10]Bugeaud, Y.. Approximation by algebraic integers and Hausdorff dimension. J. Lond. Math. Soc. (2) 65 (2002), 547559.Google Scholar
[11]Bugeaud, Y.. A note on inhomogeneous diophantine approximation. Glasg. Math. J. 45 (2003), 105110.CrossRefGoogle Scholar
[12]Bugeaud, Y., Harrap, S., Kristensen, S. and Velani, S.. On shrinking targets for ℤm-actions on the torii. Mathematika 56 (2010), 193202.CrossRefGoogle Scholar
[13]Cassels, J. W. S.. An introduction to diophantine approximation (Cambridge Tracts in Mathematics and Mathematical Physics, 45). Cambridge University Press, New York, 1957.Google Scholar
[14]Collet, P., Lebowitz, J. and Porzio, A.. The dimension spectrum of some dynamical systems. J. Stat. Phys. 47 (1987), 609644.Google Scholar
[15]Dodson, M. M., Melián, M. V., Pestana, D. and Velani, S. L.. Patterson measure and Ubiquity. Ann. Acad. Sci. Fenn. Ser. A I Math. 20 (1995), 3760.Google Scholar
[16]Einsiedler, M., Katok, A. and Lindenstrauss, E.. Invariant measures and the set of exceptions to Littlewood’s conjecture. Ann. of Math. (2) 164(2) (2006), 513560.Google Scholar
[17]Falconer, K. J.. Fractal geometry. Mathematical Foundations and Applications, 2nd edn. John Wiley, Hoboken, NJ, 2003.Google Scholar
[18]Fan, A.-H., Schmeling, J. and Troubetzkoy, S.. Dynamical Diophantine approximation. Preprint, 2009.Google Scholar
[19]Galatolo, S.. Dimension and hitting time in rapidly mixing systems. Math. Res. Lett. 14(5) (2007), 797805.Google Scholar
[20]Hill, R. and Velani, S. L.. Ergodic theory of shrinking targets. Invent. Math. 119 (1995), 175198.Google Scholar
[21]Hill, R. and Velani, S. L.. The shrinking target problem for matrix transformations of tori. J. Lond. Math. Soc. (2) 60(2) (1999), 381398.Google Scholar
[22]Jarnik, V.. Diophantische Approximationen und Hausdorffsches Mass. Mat. Sb. 36 (1929), 371381.Google Scholar
[23]Kim, D. H.. The shrinking target property of irrational rotations. Nonlinearity 20(7) (2007), 16371643.Google Scholar
[24]Kleinbock, D. and Margulis, G. A.. Flows on homogeneous spaces and Diophantine approximation on manifolds. Ann. of Math. (2) 148 (1998), 339360.Google Scholar
[25]Kleinbock, D., Lindenstrauss, E. and Weiss, B.. On fractal measures and Diophantine approximation. Selecta Math. (N.S.) 10 (2004), 479523.Google Scholar
[26]Liverani, C., Saussol, B. and Vaienti, S.. Conformal measure and decay of correlation for covering weighted systems. Ergod. Th. & Dynam. Sys. 18(6) (1998), 13991420.CrossRefGoogle Scholar
[27]Ornstein, D. and Weiss, B.. Entropy and data compression schemes. IEEE Trans. Inform. Theory 39(1) (1993), 7883.Google Scholar
[28]Pesin, Y. and Weiss, H.. The multifractal analysis of Gibbs measures: motivation, mathematical foundation, and examples. Chaos 7(1) (1997), 89106.Google Scholar
[29]Parry, W. and Pollicott, M.. Zeta functions and the periodic orbit structure of hyperbolic dynamics. Astérisque 187–188 (1990).Google Scholar
[30]Philipp, W. and Stout, W.. Almost sure invariance principles for partial sums of weakly dependent random variables. Mem. Amer. Math. Soc. 2 161 (1975).Google Scholar
[31]Rand, D. A.. The singularity spectrum f(α) for cookie-cutters. Ergod. Th. & Dynam. Sys. 9(3) (1989), 527541.Google Scholar
[32]Ruelle, D.. Thermodynamic formalism. The Mathematical Structures of Equilibrium Statistical Mechanics, 2nd edn(Cambridge Mathematical Library). Cambridge University Press, Cambridge, 2004.Google Scholar
[33]Schmeling, J. and Troubetzkoy, S.. Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons. Mat. Sb. 194 (2003), 295309.Google Scholar
[34]Simpelaere, D.. Dimension spectrum of Axiom A diffeomorphisms. II. Gibbs measures. J. Stat. Phys. 76(5–6) (1994), 13591375.Google Scholar
[35]Walters, P.. Invariant measures and equilibrium states for some mappings which expand distances. Trans. Amer. Math. Soc. 236 (1978), 121153.CrossRefGoogle Scholar