It would seem from results of Foltz, Lair, and Kelly that symmetric monoidal closed structures, and even monoidal biclosed ones, are quite rare on one-sorted algebraic or essentially-algebraic categories. They showed many such categories to admit no such structures at all, and others to admit only one or two; no such category is known to admit an infinite set of such structures.
Among concrete categories, topological ones are in some sense at the other extreme from essentially-algebraic ones; and one is led to ask whether a topological category may admit many such structures. On the category of topological spaces itself, only one such structure - in fact symmetric - is known; although Greve has shown it to admit a proper class of monoidal closed structures. One of our main results is a proof that none of these structures described by Greve, except the classical one, is biclosed.
Our other main result is that, nevertheless, there exist topological categories (of quasi-topological spaces) which admit a proper class of symmetric monoidal closed structures. Even if we insist (like most authors) that topological categories must be wellpowered, we can still exhibit ones with more such structures than any small cardinal.