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NORMAL AND SUBNORMAL SUBGROUPS
IN THE GROUP OF UNITS OF GROUP RINGS

JAIRO ZACARIAS GONCALVES

Let KG be the group ring of the group (G over the infinite
field X , and let U(XG) be its group of units. If G is
torsion, we obtain necessary and sufficient conditions for a
finite subgroup H of G to be either normal or subnormal in
U(KG) . Actually, if H 4is subnormal in U(KG) , we can handle
not only the case H finite, but the precise assumptions depend

on the characteristic of K .

1. Introduction

Let RG be the group ring of the group (G over an integral domain
R , and let U(RG) bYe its group of units. When R = K , an infinite field
of characteristic p > 0 , and G 1is a torsion group we show that finite
normal and subnormal subgroups of U(XKG) are central or "almost" central.
This has a strong resemblance to the case in which G is finite, and is in

the same line as Pearson [6é], and Pearson and Taylor [7].

If R =2 , the ring of rational integers, we conclude that (¢ is
subnormal in U(ZG) if, and only if, G 1is an abelian or a Hamiltonian

2-group; as a corollary we obtain [§], Theorem 1.

Our technique, which already appears in [3], is inspired by Herstein
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£5]. We are indebted to Arnaldo Mandel for many useful conversations.

2. Preliminary results

If H is a subgroup of (G we write H< G to indicate that H is

normal in G , and H< <G to indicate that H is subnormal in G .

LEMMA 2.1. Let 1N be a nonempty subset of the set of rational
primes, and let N be a I-subgroup of G, N<W<IG . Then there exists a
N-subgroup M , M< G, such that Nc M.

Proof. See [5], Lemma 1.

Let KXG[X] be the polynomial ring in the commutative indeterminate X

with coefficients in KG .

LEMMA 2.2 (van der Monde determinant argument). Let f(X) be an
element of KG[X] . If f£(X) assumes the same value for infinitely many

elements of K , then f <s constant.

Proof. The claim is obviously equivalent to the statement that, if

Ff(X) has an infinite number of zeros in X , then f(X) is zero. Hence,

let f(X) = a, + alX + ...+ aan and let }\O’ )\l, cees )\n be a set of
n + 1 distinct zeros of f(X) in K . Then, using matrix notation
1 ... 1]
)\0 }‘l An
2 2 2
[ao, al,...,an] Ag A eee A =10,0,...,0]
n o\n n
_>‘0 )\l A’E_
The matrix is invertible, whence [ao, as e an] = [0, 0, ..., 0}

PROPOSITION 2.3. Let m and n be positive integers, n > 1 , let

f(x) = a, + alX + ...+ amn}(m be an element of KG[(X] , and suppose that

the rational function g(X) = f(X)/(_l—Xn)m assumes the same value for

infinitely many elements of K . Then a, = 0.

Proof. Let B be an infinite subset of K , and let ¢ be an
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element of XG such that

g(A) = ¢ for every X €B .

Then f(A) = c(l—kn)m for every A € B , and since the right hand side has

no term of first degree in A , by Lemma 2.2, a, = o .

Given an element u € XKG , char K = p > 0 , we define an inner

(0)

derivation in KXG 1in the usual way: if w € KG , then w =w ,

(1) | 0y,

w' = wu - ww and W , for every 4 21 . Now, if r is a

positive integer, we recall the formula
r r r
(1) w(p ) = wf - up w .

3. Normal subgroups of the group of units
We denote by CU(KG) the center of U(KG)

THEQREM 3.1. Let K be an infinite field, let G be a group
generated by torsion elements and let H be a subgroup of U(KG) .
Suppose moreover that, either H is finite or H 4is abelian and HC G .
Then H < U(KG) <1f, and only if, H < tU(KG) .

Proof. Only necessity requires a proof.
(i) H is finite. Let h € H , and let g € G be a generator of G
of order n . Let A Dbe an element of K such that An # 1 . Then
- 1+Ag+...+xn_lgﬁ_l
1-A"

(1—kg)_l
and let us consider for such A the element
Ry = (1R 1)
Developing the above expression as a polynomial in A we obtain

1+x(g_hgh'l]+xgq2(g,h)+.-.+Anqn(g,h)

h
A 13"

where q2(g, R, «ouy qn(g, h) ¢ KG .

https://doi.org/10.1017/5000497270000931X Published online by Cambridge University Press


https://doi.org/10.1017/S000497270000931X

358 Jairo Zacarias Goncalves

Now, since H < U(KG) , the rational function

l+(g—hgh_l)X+q2X2+...+ann
I d

assume values in H , for an infinite number of A in K . Thus, since #H

¢(x) =

is finite, the Pigeon-Hole Principle implies that ¢(X) assumes the same

value for infinitely many A in K . By Proposition 2.3,
g - hgh-l =0
and
gh = hg .

Since every h € H commutes with every torsion generator g € G the

conclusion follows.
(ii) H is abelian and H © G . Arguing as in (i), we observe that
for infinitely many A belonging to X we have that (1-An]¢(k) € KH .
Hence, solving the system of equations as in Lemma 2.2, we conclude that
g - hgh"l € KH |
or
gh - hg € KH .

So, if g € G\H is a torsion generator of G , we obtain gh = hg ,

as was to be proved.

4. Subnormal subgroups of the groups of units

We cannot handle the subnormality question as easily, and so we will

study separately the cases p =0 and p >0

Let R be an integral domain. We denote by V(RG) the group of
normalized units of RG , that is, the set of elements of U(RG) with
augmentation one. The proposition below is an easy generalization of [9],

Theorem II 5.1.

PROPOSITION 4.1. Let G be a group, let R be an integral domain
of characteristic 0 such that no rational prime is a wnit of R , and let
H be a torsion subnormal subgroup of V(RG) . Then H< G and H is an
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abelian or a Hamiltonian 2-group, with every subgroup normal in G .

Proof. By Lemma 2.1 there exists a torsion normal subgroup N of

V(RG) such that Hc N . By [9], Theorem II 5.1, the conclusion follows.

THEOREM 4.2. et G be a torsion group. Then G< <U(ZG) if, and
only 1f G 1is an abelian or a Hamiltonian 2-group.

Proof. Necessity. Since G < V(ZG) we have that G< <V(ZG) , and
applying Proposition 4.1 we arrive at the desired conclusion.

Sufficiency. Apply [9], Corollary II 2.5.

The corollary below implies in particular, [8], Theorem 1.

COROLLARY 4.3, Let G be a torsion group. Then U(ZG) <is
nilpotent if, and only if, G 1is an abelian or a Hamiltonian 2-group.

Proof. Necessity. Since U(ZG) 1is nilpotent every subgroup of
U(ZG) 1is subnormal. So G« <aU(2Z2G) , and by Theorem 4.2, G is an

abelian or a Hamiltonian 2-group.

Sufficiency. If (G is abelian there is nothing to prove. If G is

a Hamiltonian 2-group apply [9], Corollary II 2.5.

THEOREM 4.4. Let K be a field of characteristic 0, let G be a
torsion group and let H be a subgroup of G . Then H<<U(KG) <if, and
only if H< LG .

Proof. Only necessity requires a proof.

Since H<a<U(KG) it follows that H<a <9U(ZG) so, by Proposition

4.1, H is either an abelian or a Hamiltonian 2-group.
Suppose that H is a Hamiltonian 2-group. Then H = K8 x E , the

direct product of the quaternion group of order 8 by an elementary
abelian 2-group E . So K8<l H , and Kg< <yJ(KG) implies that

K8<I<IU[KK8) , in contradiction to [Z2], Theorem 2.k.

Therefore H 1is abelian and we claim that H is central. Suppose
not. Then there exist a € H and g € G such that (a, g) # 1 , and
since {(a) < G it follows that G = {a, g) , the subgroup generated by a
and g , is finite. Again (a)< H< <U(KG) and so (a)< <U(KG) , in

contradiction to [2], Theorem 2.k.
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Now we turn our attention to the case p > 0 .

PROPOSITION 4.5. [Let K be an infinite field of characteristic
p >0, let G be a group generated by torsion elements, and let H be a
subnormal subgroup of U(KG) such that either H 1is finite or H 1is
nilpotent. Then there exists a positive integer 1 = 1 such that

Z
H < U(KG)

; is finite. =N < Q...<QN <N =
Proof. (i) H 1is finite. Let # Nr Nr—l Nl NO U(KG)
be a subnormal series for H , let h € H , let g € G be a generator of
G of order n , and let A € K be such that A° # 1 . Then
Lo l+Ag+...+An_lqn_l
1-2\"

(1-Ag

and we define recursively,

- - A} —
ey = (h, (l—kg)), ey, = (ckl’ hj 5 ..., ck(i+l) = (cli’ h)

s . . -1 -
for every positive integer < , and where (x, y) = xyz 'y 1 .

As before

l+A(g'h_l)+A2q2(g,h)+...+Anqn(g,h)

“xn

1-2"
with q2, ey qn € KG . In general, an easy induction argument shows that
(m),-my .2 mn
LA (g "R X s, (g o)+ X s (k)
c =
Am (l-ln)m
where S55 cvv smn € KG
Now choose a positive integer [ such that m = pZ >r . Then
S € H for every X € K such that A # 1 , and since H is finite the

Pigeon-Hole Principle implies that the rational function

1+X(g(m)h-m)+xzs2+...+ansmn
(1-2")"

$(X) =
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assumes the same value for infinitely many A € K . By Proposition 2.3,

g(m)h—m =0

R ]

and by formula (I) we have

and the conclusion follows.

(ii) H 1is nilpotent. As in (i), we define inductively the elements

c for every positive integer % . Since H is nilpotent there exists a

AT

positive integer 7 such that, for m = pZ , we have ey = 1 for every

A €K with A7 # 1 . Now repeat the argument of (i).

THEOREM 4.6. Let K be an infinite field of characteristic p > 0 ,
let G be a group generated by torsion elements, and let H be a subgroup
of U(KG) such that either H <is finite or H 1is torsion nilpotent.

Then H<<U(KG) if, and only if:

(a) H =P x q , the direct product of a p-group P by a

p'-group @Q ;

(b) there exists a positive integer 1 such that

Z
P x Q< tU(kG) and P<<aU(KG) .

Proof. Necessity. (i) H is finite. By Proposition 4.5 there

exists a positive integer I such that

Z
® < tu(ke) nHc TH .

Therefore H/CH is a finite p-group and hence H 1is nilpotent. Thus we
can write H = P X @ , the direct product of a finite p-group P by a
finite p'-group @ . Moreover, since the order of every element of & is

prime to p we have that @ < GU(KXG)
Now, since P< H , it follows that P<1<AU(KG) .

(ii) H 1is torsion nilpotent. Once more, since H is torsion
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nilpotent, we can write H = P X @ , the direct product of a p-subgroup P
by a p'’-subgroup € and repeat the reasoning above, invoking Proposition

4.5.
Sufficiency. Since P<1<U(KG) and @ € CU(KG) it follows that
H =P x @ <YU(KG)

As a consequence of Theorem 4.6 above we can obtain the result of

Pearson and Taylor [7] for infinite fields of nonzero characteristic.

COROLLARY 4.7. Let K be an infinite field of nonzero
characteristic p and let G be a finite group. Then a subgroup H of
G 1is subnormal in U(KG) if, and only if, H =P %x @ where P is
contained in Op(G) , the maximum normal p-subgroup of G , and @ 1is a

p'-group contained in &G .

Proof. Necessity. By Theorem 4.6, H = P x @ , with P a subnormal
p-subgroup of U(XKG) and @ € LU(KG) a p'-subgroup. But P < G , and
since P< <U(KG) implies P<<G , by Lemma 2.1, P C Op(G) . The

remaining part follows from the fact that GCU(KG) n G = LG .

Sufficiency. See [7].

COROLLARY 4.8. Let G be a finite group and let K be an infinite
field. Then G<<W(KG) if and only if U(KG) <is nilpotent.

Proof. If U(KG) is nilpotent certainly G< <lU(KG) . So, let us
assume that G < <U(KG)

If char K = 0 , by Theorem 4.4, G 1is abelian, so U(KG) is
nilpotent.

If char K =p > 0 , by Theoren L.6, G =P x @ , the direct product
of a p-subgroup P by a central p’-subgroup € . Now by [1], U(XG) is
nilpotent.

COROLLARY 4.9. Let K be an infinite field of characteristic p > O

and let G be a group generated by torsion elements. Then a subnormal
p'-subgroup H of U(KG) is nilpotent if, and only i1f, H < CU(KG) .

COROLLARY 4.10. Let K be an infinite field of characteristic
p >0, and let G be a torsion solvable group without p-elements. Then
G<a<lU(KG) <if, and only if G 1is abelian.
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Proof. Suppose that G<9<9U(XG) . By [4], Lemma 1, G contains a
nilpotent characteristic subgroup N of class at most two, such that

N> CG(N) , the centralizer of N in G .
Since N is a nilpotent p’-subgroup with N <W<IU(XG) , by Corollary
4.9 it follows that N C G . So, from Ng%W)wemMMMtMtG=N

and G is abelian.
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