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A GEOMETRICALLY ABERRANT BANACH SPACE
WITH NORMAL STRUCTURE

J.R. G1LESs, BRAILEY SiMs AND S. SWAMINATHAN

An example is given of a Banach space with normal structure which
does not satisfy the geometrical conditions commonly expected to

be related to normal structure.

A Banach space is said to have normal structure if for each non-

trivial bounded convex subset K there exists a point p € X such that
sup{|lp-z|| : * € K} < diam X .

A Banach space is said to have wniformly normal structure if there exists a
0 <k <1 such that for each bounded convex subset KX there exists a

point p € K such that
sup{|p-z|| : x € Xk} <= k diam K .

Normal structure was introduced by Brodskii and Milman [2] and has been
significant in the development of fixed point theory. A recent survey of

results on normal structure has been given by Swaminathan [17].

Considerable research has been directed into finding geometrical

conditions which imply normal structure.

A Banach space is said to be wniformly rotund if for any given € >0
there exists a 6 > 0 such that, for zx,y , flzll =1yl =1, llxy| <c¢
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when flz+yl] > 2 - § ; such a space has uniformly normal structure, [5].

A Banach space is said to be wniformly rotund in every direction if
for any given 2 # 0 and € > 0 there exists a &(g, 2) > 0 such that
IX] <e for x,y, |zl =llyll =1 and x -y = Az when |xty] >2 - 6 ;
such a space has normal structure, [4], but not necessarily uniformly

normal structure, [§].

A Banach space is said to be weakly wniformly Kadec-Klee if there

exists an € <1 and a § > 0 such that for every sequence {xn} R
Han < 1 which converges weakly to x and inf{”xn-xm” :m#n} =€ we

have Jlzj] =1 - 8 . Van Dulst and Sims have recently shown that such a
space has weak normal structure, that is, the normal structure property

holds for weakly compact convex sets, [J12].

A Banach space is said to be locally uniformly rotund if for any given
1 and € > 0 there exists a &(g, ) > 0 such that [z-yl] <€

1 , when Jlx+y|l > 2 - 8 . Smith and Turett have recently

z 5 =l

for |lyll
provided an example of a reflexive locally uniformly rotund space which

does not have normal structure, [10].

In this paper we give an example of a reflexive Banach space which
lacks all of these geometrical properties but which does have normal

structure.

In order to produce an example of a discontinuous metric projection

Brown devised a geometrically interesting equivalent renorming of Hilbert

sequence space 12 , [3]. Given natural basis {en} and writing

_ 2 _
M:{{An}ez :Al—o}
and

Mk = sp{el, ek} for k=3,

12 can be given an equivalent rotund norm ||+]|| such that its restriction

. - 2 B s -
to M remains the original I -norm ”-"2 and its restriction to M% is

,p(K)

an -norm where p{(k) +® as k + o ,
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Brown's space is not uniformly rotund in every direction. For

xk = (elwk)/llel.'.ek” and yk = (_elwk)/ll—el+ekll ’
=2 __ . - ®
T - Y = 2l/p(k) e, and Ika ykll >2 as k>
but
x, +Y -2 — .o ana le,+y, ]l > 2 as k + =
kT Ay %k Ktk .

Brown's space is not weakly uniformly Kadec-Klee. For

@, = (el+ek]/||el+ekll and any y =) ae

(xk, y) = 21—/;(7)‘ (Otl‘fak)

+~0, as k »o
1

= (el, y] .
So the sequence {xk} converges weakly to el . But
2
ii:x:—x||2=e[ 11 ]+ k _“
xFile T GI7pTRY T J17p(D)) T JI7p(R) T 1/p(D)|
2

=(1_1}2+1+1
VNV £2) BT =1 (O BT 162

+2 as k, 1>,

However, (1/V2) ”.’Z.‘”2 < |zl = ||.7::||2 for all =z €1, so

lim inf |x, -2, || =2 1 .
k1o k71

Therefore, for every 0 < e <1,

lim inf{”xk—lel tk#l)=z2e
but ueln =1,

Brown's space is not locally uniformly rotund. For
z, = (eyrer)/lle ve i
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= 1 1
eyl = | [l ¥ 21/p(k)Jel MV A
( NTES 1/p(k)
1+ 21/p(k)] + %
+2 as k+ o,
But
= 1 1
eyl = | 1 - 21/p(ﬂ]el " TR %k
( YO R
V(2 g

+1 as k>,

Nevertheless, as a reflexive Banach space containing a Hilbert subspace of
codimension one, Brown's space does have normal structure as is evident

from the following general result.

LEMMA. If a Banach space X contains a closed subspace M of finite

codimension with wniformly normal structure them X has normal structure.

Proof. Since M has uniformly normal structure it is reflexive, [9],
and since X contains a reflexive subspace of finite codimension it too is
reflexive. Suppose that X does not have normal structure. Then by the
characterisation theorem of Brodskii and Milman [2], there exists a weakly

compact convex subset K containing a sequence {xn} such that
d(xm_l, co{xl, cees xn}] > diam K as n +> o .

Subsequences of {xn} satisfy this property so we may, by weak compactness
assume that {xn} converges weakly; by translation we may assume that
{:x:n} is weakly convergent to O ; by scaling we may assume that

diam XK = 1 . Consider a linear projection P from X onto M . Since

{:z:n} converges weakly to 0 so {xn—Pxn} is convergent to 0 in the
finite dimensional complement of M .

Given 0 < k <1 the constant associated with the uniformly normal
structure of M , choose 0 < € < (1-k)/4(1+k) . Then there exists a Vv
such that
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low -Px || <€ for all n > v .,
n n

Consider K' = co{xn :n >v} . Now XK' has the diametral property that,
for any x € K' ,
sup{fjz—yl| : y € K'} = dlam k' =1 .

Since |lx-Px|l < € for all x € K' , it follows that diam P(K') <1 + 2€ .
From the uniformly normal structure of M there exists a p € XK' such
that

I|IPp-Px|| = k(1+2€) for all =z € XK'

But then, for all x € X' ,

tA

llp-Ppll + ||Pp-Px|l + [|Pz—x||
2e + k(1+2¢)

5(1+k) <1

llp-=l|

1A

A

and this contradicts the diametral property of X' .

Bernal and Sullivan have recently provided a condition under which an
equivalent renorming of Hilbert space has normal structure, [1]. Given a

Hilbert space (X, “.”2) and a norm J|*|| on X such that

% llally = Nzl < llall, for a11 @ € X

where 1 < B < V2 , then the Banach space (X, ||*|) has normal structure.
However, Brown's renorming of Hilbert space has B = V2 and is therefore
an example which shows that, for equivalent renormings of Hilbert space the

Bernal-Sullivan condition is not necessary for normal structure.

As a reflexive Banach space containing a closed subspace with
discontinuous metric projection it can be deduced indirectly from Fan and
Glicksberg [6] that Brown's space lacks a variety of geometrical
properties. Brown's space has also been used by Giles [7] to demonstrate
the relationship between geometrical properties used by Viasov in the

convexity of the Chebychev set problem.
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