Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-03T02:26:31.717Z Has data issue: false hasContentIssue false

En route to disentangle the impact and neurobiological substrates of early vocalizations: Learning from Rett syndrome

Published online by Cambridge University Press:  17 December 2014

Peter B. Marschik
Affiliation:
Institute of Physiology, Research Unit iDN – Interdisciplinary Developmental Neuroscience, Medical University of Graz Austria, 8010 Graz, Austria. [email protected]@medunigraz.atwww.medunigraz.at/physiologie/pbmarschikwww.medunigraz.at/physiologie/ceinspieler
Walter E. Kaufmann
Affiliation:
Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115. [email protected]://www.iddrc.org/childrens-hospital-boston/index.php/investigators/details/walter_e._kaufmann_md
Sven Bölte
Affiliation:
Center of Neurodevelopmental Disorders (KIND), Department of Women's and Children's Health, Karolinska Institutet, Astrid Lindgren Children's Hospital, Solna 171 76 Stockholm, Sweden. [email protected]/kind
Jeff Sigafoos
Affiliation:
School of Educational Psychology, Victoria University of Wellington, PO Box 600, Wellington 6012, New Zealand. [email protected]://www.victoria.ac.nz/education/about/staff/ed-psy-ped-staff/jeff-sigafoos
Christa Einspieler
Affiliation:
Institute of Physiology, Research Unit iDN – Interdisciplinary Developmental Neuroscience, Medical University of Graz Austria, 8010 Graz, Austria. [email protected]@medunigraz.atwww.medunigraz.at/physiologie/pbmarschikwww.medunigraz.at/physiologie/ceinspieler

Abstract

Research on acoustic communication and its underlying neurobiological substrates has led to new insights about the functioning of central pattern generators (CPGs). CPG-related atypicalities may point to brainstem irregularities rather than cortical malfunctions for early vocalizations/babbling. The “vocal pattern generator,” together with other CPGs, seems to have great potential in disentangling neurodevelopmental disorders and potentially predict neurological development.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barlow, S. M. & Estep, M. (2006) Central pattern generation and the motor infrastructure for suck, respiration, and speech. Journal of Communication Disorders 39:366–80.Google Scholar
Barlow, S. M., Lund, J. P., Estep, M. & Kolta, A. (2009) Central pattern generators for orofacial movements and speech. In: Handbook of mammalian vocalization, ed. Brudzynski, S. M., pp. 351–70. Academic Press.Google Scholar
Belichenko, N. P., Belichenko, P. V., Li, H. H., Mobley, W. C. & Francke, U. (2008) Comparative study of brain morphology in Mecp2 mutant mouse models of Rett syndrome. Journal of Comparative Neurology 508:184–95.Google Scholar
Darkins, A. W., Fromkin, V. A. & Benson, D. F. (1988) A characterization of the prosodic loss in Parkinson's disease. Brain and Language 34:315–27.Google Scholar
De Filippis, B., Ricceri, L. & Laviola, G. (2010) Early postnatal behavioral changes in the Mecp2-308 truncation mouse model of Rett syndrome. Genes, Brain and Behavior 9:213–23.CrossRefGoogle ScholarPubMed
Einspieler, C. & Marschik, P. B. (2012) Central Pattern Generators and their significance for the foetal motor function. Klinische Neurophysiologie 43:1621.Google Scholar
Elowson, A. M., Snowdon, C. T. & Lazaro-Perea, C. (1998) “Babbling” and social context in infant monkeys: Parallels to human infants. Trends in Cognitive Sciences 2:3137.CrossRefGoogle Scholar
Gantz, S. C., Ford, C. P., Neve, K. A. & Williams, J. T. (2011) Loss of Mecp2 in substantia nigra dopamine neurons compromises the nigrostriatal pathway. The Journal of Neuroscience 31:12629–37.Google Scholar
Grillner, S., Deliagina, T., Ekeberg, O., el Manira, A., Hill, R. H., Lansner, A., Orlovsky, G. N. & Wallén, P. (1995) Neural networks that co-ordinate locomotion and body orientation in lamprey. Trends in Neurosciences 18:270–79.Google Scholar
Hage, S. R. & Jürgens, U. (2006) On the role of the pontine brainstem in vocal pattern generation: A telemetric single-unit recording study in the squirrel monkey. Journal of Neuroscience 26:7105–15.CrossRefGoogle ScholarPubMed
Hikosaka, O. (2007) GABAergic output of the basal ganglia. In: GABA and the basal ganglia: From molecules to systems, ed. Tepper, J. M., Abercrombie, E. D. & Bolam, J. P., pp. 209–26. (Progress in Brain Research, vol. 160). Elsevier.Google Scholar
Kaufmann, W. E., Johnston, M. V. & Blue, M. E. (2005) MeCP2 expression and function during brain development: Implications for Rett syndrome's pathogenesis and clinical evolution. Brain and Development 27:S77S87.CrossRefGoogle ScholarPubMed
Kittelberger, J. M. & Bass, A. H. (2013) Vocal-motor and auditory connectivity of the midbrain periaqueductal gray in a teleost fish. Journal of Comparative Neurology 521:791812.CrossRefGoogle Scholar
Marschik, P. B., Kaufmann, W. E., Sigafoos, J., Wolin, T., Zhang, D., Bartl-Pokorny, K. D., Pini, G., Zappella, M., Tager-Flusberg, H., Einspieler, C. & Johnston, M. V. (2013) Changing the perspective on early development of Rett syndrome. Research in Developmental Disabilities 34:1236–39.CrossRefGoogle ScholarPubMed
Marschik, P. B., Pini, G., Bartl-Pokorny, K. D., Duckworth, M., Gugatschka, M., Vollmann, R., Zappella, M. & Einspieler, C. (2012) Early speech-language development in females with Rett syndrome: Focusing on the preserved speech variant. Developmental Medicine and Child Neurology 54:451–56.Google Scholar
Menuet, C., Cazals, Y., Gestreau, C., Borghgraef, P., Gielis, L., Dutschmann, M., Van Leuven, F. & Hilaire, G. (2011) Age-related impairment of ultrasonic vocalization in Tau.P301 L mice: Possible implication for progressive language disorders. PLOS ONE 6:e25770.Google Scholar
Neul, J. L., Kaufmann, W. E., Glaze, D. G., Christodolou, J., Clarke, A. J., Bahi-Buisson, N., Leonard, H., Bailey, M. E., Schanen, N. C., Zappella, M., Renieri, A., Huppke, P., Percy, A. K. & RettSearch Consortium. (2010) Rett syndrome: Revised diagnostic criteria and nomenclature. Annals of Neurology 68:944–50.CrossRefGoogle ScholarPubMed
Paul, R., Fuerst, Y., Ramsay, G., Chawarska, K. & Klin, A. (2011) Out of the mouths of babes: Vocal production in infant siblings of children with ASD. Journal of Child Psychology and Psychiatry 52:588–98.Google Scholar
Van Lancker Sidtis, D., Pachana, N., Cummings, J. L. & Sidtis, J. J. (2006) Dysprosodic speech following basal ganglia insult: Toward a conceptual framework for the study of the cerebral representation of prosody. Brain and Language 97:135–53.Google Scholar
Zhang, S. P., Bandler, R. & Davis, P. J. (1995) Brain stem integration of vocalization: Role of the nucleus retroambigualis. Journal of Neurophysiology 74:2500–12.Google Scholar