Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-08T22:37:07.508Z Has data issue: false hasContentIssue false

The basal ganglia within a cognitive system in birds and mammals

Published online by Cambridge University Press:  17 December 2014

Christopher I. Petkov
Affiliation:
Institute of Neuroscience, Newcastle University, Medical School, Newcastle upon Tyne NE2 4HH, United Kingdom. [email protected]://www.staff.ncl.ac.uk/chris.petkov Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
Erich D. Jarvis
Affiliation:
Howard Hughes Medical Institute and Department of Neurobiology, Duke University, Durham, NC 27710. [email protected]://www.jarvislab.net/

Abstract

The primate basal ganglia are fundamental to Ackermann et al.'s proposal. However, primates and rodents are models for human cognitive functions involving basal ganglia circuits, and links between striatal function and vocal communication come from songbirds. We suggest that the proposal is better integrated in cognitive and/or motor theories on spoken language origins and with more analogous nonhuman animal models.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arriaga, G. & Jarvis, E. D. (2013) Mouse vocal communication system: Are ultrasounds learned or innate? Brain and Language 124(1):96116. doi: 10.1016/j.bandl.2012.10.002.Google Scholar
Arriaga, G., Zhou, E. P. & Jarvis, E. D. (2012) Of mice, birds, and men: The mouse ultrasonic song system has some features similar to humans and song-learning birds. PLOS ONE 7(10):e46610. doi: 10.1371/journal.pone.0046610.Google Scholar
Charlesworth, J. D., Warren, T. L. & Brainard, M. S. (2012) Covert skill learning in a cortical-basal ganglia circuit. Nature 486(7402):251–55. doi: 10.1038/nature11078.Google Scholar
Feenders, G., Liedvogel, M., Rivas, M., Zapka, M., Horita, H., Hara, E. & Jarvis, E. D. (2008) Molecular mapping of movement-associated areas in the avian brain: A motor theory for vocal learning origin. PLOS ONE 3(3):e1768. doi: 10.1371/journal.pone.0001768.Google Scholar
Fitch, W. T. & Hauser, M. D. (2004) Computational constraints on syntactic processing in a nonhuman primate. Science 303(5656):377–80. doi: 10.1126/science.1089401.Google Scholar
Fitch, W. T., Huber, L. & Bugnyar, T. (2010) Social cognition and the evolution of language: Constructing cognitive phylogenies. Neuron 65(6):795814. doi: 10.1016/j.neuron.2010.03.011.Google Scholar
Fitch, W. T. & Jarvis, E. D. (2012) Birdsong and other animal models for human speech, song, and vocal learning. In: Language, music and the brain, ed. Arbib, M., pp. 499540. MIT Press.Google Scholar
Friederici, A. D. (2011) The brain basis of language processing: From structure to function. Physiological Reviews 91(4):1357–92. doi: 10.1152/physrev.00006.2011.Google Scholar
Jarvis, E. D. (2004b) Learned birdsong and the neurobiology of human language. In: Behavioral neurobiology of birdsong, ed. Zeigler, H. P., Marler, P., pp. 749–77. (Annals of the New York Academy of Sciences, vol. 1016). New York Academy of Sciences.Google Scholar
Jarvis, E. D. (2006) Selection for and against vocal learning in birds and mammals. Ornithological Science 5:514.Google Scholar
Jarvis, E. D., Ribeiro, S., da Silva, M. L., Ventura, D., Vielliard, J. & Mello, C. V. (2000) Behaviourally driven gene expression reveals song nuclei in hummingbird brain. Nature 406(6796):628–32. doi: 10.1038/35020570.Google Scholar
Matell, M. S. & Meck, W. H. (2004) Cortico-striatal circuits and interval timing: Coincidence detection of oscillatory processes. Brain Research: Cognitive Brain Research 21(2):139–70. doi: 10.1016/j.cogbrainres.2004.06.012.Google Scholar
Petkov, C. I. & Jarvis, E. D. (2012) Birds, primates, and spoken language origins: Behavioral phenotypes and neurobiological substrates. Frontiers in Evolutionary Neuroscience 4:12. doi: 10.3389/fnevo.2012.00012.Google Scholar
Petkov, C. I. & Wilson, B. (2012) On the pursuit of the brain network for proto-syntactic learning in non-human primates: Conceptual issues and neurobiological hypotheses. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 367(1598):2077–88. doi: 10.1098/rstb.2012.0073.Google Scholar
Schultz, W., Tremblay, L. & Hollerman, J. R. (2000) Reward processing in primate orbitofrontal cortex and basal ganglia. Cerebral Cortex 10(3):272–84.Google Scholar
Wild, J. M. (1997) Neural pathways for the control of birdsong production. Journal of Neurobiology 33:653–70.Google Scholar
Wilson, B., Slater, H., Kikuchi, Y., Milne, A. E., Marslen-Wilson, W., Smith, K. & Petkov, C. I. (2013) Auditory artificial-grammar learning in macaque and marmoset monkeys. Journal of Neuroscience 33(48):18825–35. Open Access publication. PMC3841451.Google Scholar