Horizontal and vertical distributions of melt features (ice layers) were examined using two ice cores (206.6 and 101.5 m deep, 1 m apart) from Site J (66°51.9′ N, 46°15.9′W, 2030 m a.s.l.). The temperature at 10 m was −16.3°C. We observed 2804 melt features, with a total thickness of 30.32 m, in the 206.6 m core, corresponding to 16.4% by volume of the ice-equivalent core length. Horizontal distribution of melt features was examined by correlating melt-feature thicknesses in the two cores. The correlation coefficient was 0.71 (n = 514) for each melt feature in the two cores. It was maximum for data passed through 5 and 40 year low-pass filters. A significant relationship (P = 0.005, n = 36) was obtained for the vertical distribution of melt features and the June temperature on the west coast of Greenland (Jakobshavn). Using this, June temperatures at Jakobshavn since 1550 were estimated. There are three periods (1685-1705, 1835-70 and 1933-45) during which mean June temperatures clearly decreased, when they were estimated to he 0.1°, 0.4° and 0.2°C lower than the average for the whole period (1550-1989). The first two “cold” periods have been identified in melt features of the Dye 3 and Devon Island ice cores and in a tree-ring profile from Yukon Territory, Canada. Melt-feature percentages in the Site J ice core have increased since about 1945, probably reflecting summer-temperature warming on the ice sheet.