In 1992, an American-Chinese expedition successfully recovered three ice cores (308.6, 93.2 and 34.5m) from the Guliya ice cap (summit 6710 m a.s.l) in the far western Kunlun on the Qinghai–Tibetan Plateau, China. Guliya resembles a “polar” icecap with 10 m, 200 m and basal temperatures of –15.6°, –5.9° and –2.1°C, respectively. The 308.6 m core to bedrock is the longest ice core retrieved from an elevation greater than 4000 m a.s.l. and provides the first ice-core history from the western side of the Qinghai Plateau. The Plateau experiences a pronounced annual precipitation cycle during which 70–80% of annual total precipitation falls in the summer monsoon season. This leads to a marked visible stratigraphy in the glaciers which allows accurate dating of the ice cores and reconstruction of the net mass accumulation.
This paper presents (1) the results of the geophysical program to determine ice thickness, ice flow and surface topography, (2) an assessment of net accumulation from stake measurements, snow pits and shallow core samples, and (3) the analyses of the upper 100 m of the 308.6 m core which provide a 1000 year history, including the ‘“Little Ice Age”, which is compared with Chinese historical records. Extended periods of positive accumulation on Guliya are closely contemporaneous with dry periods in eastern China. A trans-Pacific teleconnection is suggested by the strong temporal coherence between extended wet and dry phases on Guliya and on the Quelccaya ice cap, Peru.