We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
A notion of entropy for the non-singular action of finite co-ordinate changes on is introduced. This quantity-average co-ordinate or AC entropy-is calculated for product measures and G-measures. It is shown that the type III classes can be subdivided using AC entropy. An equivalence relation is established for which AC entropy is an invariant.
We define the extension of the so-called ‘martingales in the branching random walk’ in R or C to some Banach algebras B of infinite dimension and give conditions for their convergence, almost surely and in the Lp norm. This abstract approach gives conditions for the simultaneous convergence of uncountable families of such martingales constructed simultaneously in C, the idea being to consider such a family as a function-valued martingale in a Banach algebra of functions. The approach is an alternative to those of Biggins (1989), (1992) and Barral (2000), and it applies to a class of families to which the previous approach did not. We also give a result on the continuity of these multiplicative processes. Our results extend to a varying environment version of the usual construction: instead of attaching i.i.d. copies of a given random vector to the nodes of the tree ∪n≥0N+n, the distribution of the vector depends on the node in the multiplicative cascade. In this context, when B=R and in the nonnegative case, we generalize the measure on the boundary of the tree usually related to the construction; then we evaluate the dimension of this nonstatistically self-similar measure. In the self-similar case, our convergence results make it possible to simultaneously define uncountable families of such measures, and then to estimate their dimension simultaneously.
New metrics are introduced in the space of random measures and are applied, with various modifications of the contraction method, to prove existence and uniqueness results for self-similar random fractal measures. We obtain exponential convergence, both in distribution and almost surely, of an iterative sequence of random measures (defined by means of the scaling operator) to a unique self-similar random measure. The assumptions are quite weak, and correspond to similar conditions in the deterministic case.
The fixed mass case is handled in a direct way based on regularity properties of the metrics and the properties of a natural probability space. Proving convergence in the random mass case needs additional tools, such as a specially adapted choice of the space of random measures and of the space of probability distributions on measures, the introduction of reweighted sequences of random measures and a comparison technique.
The Newhouse gap lemma is generalized by finding a geometric condition which ensures that N-fold sums of compact sets, which might even have thickness zero, are intervals. A new proof is also obtained of a lower bound on the thickness of the sum of two Cantor sets.
The key result of this paper proves the existence of functions ρn(h) for which, whenever H is a (Lebesgue) measurable subset of the n-dimensional unit cube In with measure |H| > h and ℛ is a class of subintervals (n-dimensional axis-parallel rectangles) of In that covers H, then there exists an interval R∈ℛ in which the density of H is greater than ρn(h); that is, |H∩R|/|R|>ρn (h) (=(h/2n)2). It is shown how to use this result to find 4 points of a measurable subset of the unit square which are the vertices of an axis-parallel rectangle that has quite large intersection with the original set. Density and covering properties of classes of subsets of ℝn are introduced and investigated. As a consequence, a covering property of the class of intervals of ℝn is obtained: if ℛ is a family of n-dimensional intervals with , then there is a finite sequence R1, …, Rm∈ℛ such that and .
Methods are used from descriptive set theory to derive Fubinilike results for the very general Method I and Method II (outer) measure constructions. Such constructions, which often lead to non-σ-finite measures, include Carathéodory and Hausdorff-type measures. Several questions of independent interest are encountered, such as the measurability of measures of sections of sets, the decomposition of sets into subsets with good sectional properties, and the analyticity of certain operators over sets. Applications are indicated to Hausdorff and generalized Hausdorff measures and to packing dimensions.
A central limit theorem is established for additive functions of a Markov chain that can be constructed as an iterated random function. The result goes beyond earlier work by relaxing the continuity conditions imposed on the additive function, and by relaxing moment conditions related to the random function. It is illustrated by an application to a Markov chain related to fractals.
A (countably) compact measure is one which is inner regular with respect to a (countably) compact class of sets. This note characterizes compact probability measures in terms of the representation of Boolean homomorphisms of their measure algebras, and shows that the same ideas can be used to give a direct proof of J. Pachl's theorem that any image measure of a countably compact measure is again countably compact.
Questions of Haight and of Weizsäcker are answered in the following result. There exists a measurable function f: (0, + ∞) → {0,1} and two non-empty intervals IFI∞⊂[½,1) such that Σ∞n = 1f(nx) = +∞ for everyx εI∞, and Σ∞n = 1f(nx) >+∞ for almost every xεIf. The function f may be taken to be the characteristic function of an open set E.
An n-hedral tiling of ℝd is a tiling with each tile congruent to one of the n distinct sets. In this paper, we use the iterated function systems (IFS) to generate n-hedral tilings of ℝd. Each tile in the tiling is similar to the attractor of the IFS. These tiles are fractals and their boundaries have the Hausdorff dimension less than d. Our results generalize a result of Bandt.
Let X1, X2,… be i.i.d. random points in ℝ2 with distribution ν, and let Nn denote the number of points spanning the convex hull of X1, X2,…,Xn. We obtain lim infn→∞E(Nn)n-1/3 ≥ γ1 and E(Nn) ≤ γ2n1/3(logn)2/3 for some positive constants γ1, γ2 and sufficiently large n under the assumption that ν is a certain self-similar measure on the unit disk. Our main tool consists in a geometric application of the renewal theorem. Exactly the same approach can be adopted to prove the analogous result in ℝd.
Let m and n be integers with 0<m<n and let μ be a Radon measure on ℝn with compact support. For the Hausdorff dimension, dimH, of sections of measures we have the following equality: for almost all (n − m)-dimensional linear subspaces V
provided that dimH μ > m. Here μv,a is the sliced measure and V⊥ is the orthogonal complement of V. If the (m + d)-energy of the measure μ is finite for some d>0, then for almost all (n − m)-dimensional linear subspaces V we have
The relationship between the topological dimension of a separable metric space and the Hausdorff dimensions of its homeomorphic images has been known for some time. In this note we consider topological and packing dimensions, and show that if X is a separable metric space, then
where and denote the topological and packing dimensions of X, respectively.
We show that a measure on ℝd is linearly rectifiable if, and only if, the lower l-density is positive and finite and agrees with the lower average l-density almost everywhere.
The aim of this paper is to resolve Taylor's question concerning certain regularity conditions on a Borel measure. The proposed solution is given in the framework of Brown, Michon and Peyrière, and Olsen.
We provide a unified and simplified proof that for any partition of (0, 1] into sets that are measurable or have the property of Baire, one cell will contain an infinite sequence together with all of its sums (finite or infinite) without repetition. In fact any set which is large around 0 in the sense of measure or category will contain such a sequence. We show that sets with 0 as a density point have very rich structure. Call a sequence and its resulting all-sums set structured provided for each We show further that structured all-sums sets with positive measure are not partition regular even if one allows shifted all-sums sets. That is, we produce a two cell measurable partition of (0, 1 ] such that neither set contains a translate of any structured all-sums set with positive measure.
We describe measurable Hilbert sheaves as Hilbert space objects in a sheaf category constructed from a measure space. These are quite useful for the interpretation of the direct integral of Hilbert spaces as an indexed functor. We set up a framework to put this and similar constructions of operator theory on an indexed categorical footing.
Dealing with a problem posed by Kupka we give results concerning the permanence of the almost strong lifting property (respectively of the universal strong lifting property) under finite and countable products of topological probability spaces. As a basis we prove a theorem on the existence of liftings compatible with products for general probability spaces, and in addition we use this theorem for discussing finite products of lifting topologies.
Throughout this paper we assume that k is a given positive integer. As usual, B(x, r) denotes the closed ball with centre at x∈ℝk and radius r > 0. Let μ be a Radon measure on ℝk, that is, μ is locally finite and Borel regular. For s ≥ 0, the lower and upper s–dimensional densities of μ at x are denned respectively by