We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We study nonlinear measure data elliptic problems involving the operator of generalized Orlicz growth. Our framework embraces reflexive Orlicz spaces, as well as natural variants of variable exponent and double-phase spaces. Approximable and renormalized solutions are proven to exist and coincide for arbitrary measure datum and to be unique when for a class of data being diffuse with respect to a relevant nonstandard capacity. A capacitary characterization of diffuse measures is provided.
We present new estimates in the setting of weighted Lorentz spaces of operators satisfying a limited Rubio de Francia condition; namely $T$ is bounded on $L^{p}(v)$ for every $v$ in an strictly smaller class of weights than the Muckenhoupt class $A_p$. Important examples will be the Bochner–Riesz operators $BR_\lambda$ with $0<\lambda <{(n-1)}/2$, sparse operators, Hörmander multipliers with a limited regularity condition and rough operators with $\Omega \in L^{r}(\Sigma )$, $1 < r < \infty$.
Our aim in this paper is to establish Trudinger’s exponential integrability for Riesz potentials in weighted Morrey spaces on the half space. As an application, we obtain Trudinger’s inequality for Riesz potentials in the framework of double phase functionals.
In this paper, we develop an extremely simple method to establish the sharpened Adams-type inequalities on higher-order Sobolev spaces
$W^{m,\frac {n}{m}}(\mathbb {R}^n)$
in the entire space
$\mathbb {R}^n$
, which can be stated as follows: Given
$\Phi \left ( t\right ) =e^{t}-\underset {j=0}{\overset {n-2}{\sum }} \frac {t^{j}}{j!}$
and the Adams sharp constant
$\beta _{n,m}$
. Then,
for any
$0<\alpha <1$
. Furthermore, we construct a proper test function sequence to derive the sharpness of the exponent
$\alpha $
of the above Adams inequalities. Namely, we will show that if
$\alpha \ge 1$
, then the above supremum is infinite.
Our argument avoids applying the complicated blow-up analysis often used in the literature to deal with such sharpened inequalities.
where $f$ satisfies a uniform VMO condition with respect to the $x$-variable and is continuous with respect to ${\bf u}$. The growth condition with respect to the gradient variable is assumed a general one.
This paper establishes the mapping properties of pseudo-differential operators and the Fourier integral operators on the weighted Morrey spaces with variable exponents and the weighted Triebel–Lizorkin–Morrey spaces with variable exponents. We obtain these results by extending the extrapolation theory to the weighted Morrey spaces with variable exponents. This extension also gives the mapping properties of Calderón–Zygmund operators on the weighted Hardy–Morrey spaces with variable exponents and the wavelet characterizations of the weighted Hardy–Morrey spaces with variable exponents.
For $1< p<\infty$ we prove an $L^{p}$-version of the generalized trace-free Korn inequality for incompatible tensor fields $P$ in $W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. More precisely, let $\Omega \subset \mathbb {R}^{3}$ be a bounded Lipschitz domain. Then there exists a constant $c>0$ such that
\[ \lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\leq c\,\left(\lVert{\operatorname{dev} \operatorname{sym} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \]
holds for all tensor fields $P\in W^{1,p}_0(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$, i.e., for all $P\in W^{1,p} (\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$ with vanishing tangential trace $P\times \nu =0$ on $\partial \Omega$ where $\nu$ denotes the outward unit normal vector field to $\partial \Omega$ and $\operatorname {dev} P : = P -\frac 13 \operatorname {tr}(P) {\cdot } {\mathbb {1}}$ denotes the deviatoric (trace-free) part of $P$. We also show the norm equivalence
\begin{align*} &\lVert{ P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}+\lVert{ \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\\ &\quad\leq c\,\left(\lVert{P}\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})} + \lVert{ \operatorname{dev} \operatorname{Curl} P }\rVert_{L^{p}(\Omega,\mathbb{R}^{3\times 3})}\right) \end{align*}
for tensor fields $P\in W^{1,p}(\operatorname {Curl}; \Omega ,\mathbb {R}^{3\times 3})$. These estimates also hold true for tensor fields with vanishing tangential trace only on a relatively open (non-empty) subset $\Gamma \subseteq \partial \Omega$ of the boundary.
We construct two bounded functional calculi for sectorial operators on Banach spaces, which enhance the functional calculus for analytic Besov functions, by extending the class of functions, generalising and sharpening estimates and adapting the calculus to the angle of sectoriality. The calculi are based on appropriate reproducing formulas, they are compatible with standard functional calculi and they admit appropriate convergence lemmas and spectral mapping theorems. To achieve this, we develop the theory of associated function spaces in ways that are interesting and significant. As consequences of our calculi, we derive several well-known operator norm estimates and provide generalisations of some of them.
Based on the Gale–Ryser theorem [2, 6], for the existence of suitable $(0,1)$-matrices for different partitions of a natural number, we revisit the classical result of Lorentz [4] regarding the characterization of a plane measurable set, in terms of its cross-sections, and extend it to general measure spaces.
The paper alluded to in the title contains the following striking result: Let $I$ be the unit interval and $\Delta$ the Cantor set. If $X$ is a quasi Banach space containing no copy of $c_{0}$ which is isomorphic to a closed subspace of a space with a basis and $C(I,\,X)$ is linearly homeomorphic to $C(\Delta ,\, X)$, then $X$ is locally convex, i.e., a Banach space. We will show that Kalton result is sharp by exhibiting non-locally convex quasi Banach spaces $X$ with a basis for which $C(I,\,X)$ and $C(\Delta ,\, X)$ are isomorphic. Our examples are rather specific and actually, in all cases, $X$ is isomorphic to $C(K,\,X)$ if $K$ is a metric compactum of finite covering dimension.
Weight criteria for embedding of the weighted Sobolev–Lorentz spaces to the weighted Besov–Lorentz spaces built upon certain mixed norms and iterated rearrangement are investigated. This gives an improvement of some known Sobolev embedding. We achieve the result based on different norm inequalities for the weighted Besov–Lorentz spaces defined in some mixed norms.
If the logarithmic dimension of a Cantor-type set K is smaller than
$1$
, then the Whitney space
$\mathcal {E}(K)$
possesses an interpolating Faber basis. For any generalized Cantor-type set K, a basis in
$\mathcal {E}(K)$
can be presented by means of functions that are polynomials locally. This gives a plenty of bases in each space
$\mathcal {E}(K)$
. We show that these bases are quasi-equivalent.
Let
$\mathrm {Lip}_0(M)$
be the space of Lipschitz functions on a complete metric space M that vanish at a base point. We prove that every normal functional in
${\mathrm {Lip}_0(M)}^*$
is weak* continuous; that is, in order to verify weak* continuity it suffices to do so for bounded monotone nets of Lipschitz functions. This solves a problem posed by N. Weaver. As an auxiliary result, we show that the series decomposition developed by N. J. Kalton for functionals in the predual of
$\mathrm {Lip}_0(M)$
can be partially extended to
${\mathrm {Lip}_0(M)}^*$
.
The main result is that the ellipticity and the Fredholm property of a
$\Psi $
DO acting on Sobolev spaces in the Weyl-Hörmander calculus are equivalent when the Hörmander metric is geodesically temperate and its associated Planck function vanishes at infinity. The proof is essentially related to the following result that we prove for geodesically temperate Hörmander metrics: If
$\lambda \mapsto a_{\lambda }\in S(1,g)$
is a
$\mathcal {C}^N$
,
$0\leq N\leq \infty $
, map such that each
$a_{\lambda }^w$
is invertible on
$L^2$
, then the mapping
$\lambda \mapsto b_{\lambda }\in S(1,g)$
, where
$b_{\lambda }^w$
is the inverse of
$a_{\lambda }^w$
, is again of class
$\mathcal {C}^N$
. Additionally, assuming also the strong uncertainty principle for the metric, we obtain a Fedosov-Hörmander formula for the index of an elliptic operator. At the very end, we give an example to illustrate our main result.
We investigate the boundedness, compactness, invertibility and Fredholmness of weighted composition operators between Lorentz spaces. It is also shown that the classes of Fredholm and invertible weighted composition maps between Lorentz spaces coincide when the underlying measure space is nonatomic.
We discuss the notion of optimal polynomial approximants in multivariable reproducing kernel Hilbert spaces. In particular, we analyze difficulties that arise in the multivariable case which are not present in one variable, for example, a more complicated relationship between optimal approximants and orthogonal polynomials in weighted spaces. Weakly inner functions, whose optimal approximants are all constant, provide extreme cases where nontrivial orthogonal polynomials cannot be recovered from the optimal approximants. Concrete examples are presented to illustrate the general theory and are used to disprove certain natural conjectures regarding zeros of optimal approximants in several variables.
The purpose of this paper is to characterize the entire solutions of the homogeneous Helmholtz equation (solutions in ℝd) arising from the Fourier extension operator of distributions in Sobolev spaces of the sphere $H^\alpha (\mathbb {S}^{d-1}),$ with α ∈ ℝ. We present two characterizations. The first one is written in terms of certain L2-weighted norms involving real powers of the spherical Laplacian. The second one is in the spirit of the classical description of the Herglotz wave functions given by P. Hartman and C. Wilcox. For α > 0 this characterization involves a multivariable square function evaluated in a vector of entire solutions of the Helmholtz equation, while for α < 0 it is written in terms of an spherical integral operator acting as a fractional integration operator. Finally, we also characterize all the solutions that are the Fourier extension operator of distributions in the sphere.
We set up the sharp Trudinger–Moser inequality under arbitrary norms. Using this result and the
$L_{p}$
Busemann-Petty centroid inequality, we will provide a new proof to the sharp affine Trudinger–Moser inequalities without using the well-known affine Pólya–Szegö inequality.
In this paper we give sufficient conditions to obtain continuity results of solutions for the so called ϕ-Laplacian Δϕ with respect to domain perturbations. We point out that this kind of results can be extended to a more general class of operators including, for instance, nonlocal nonstandard growth type operators.
The asymptotic behavior of solutions to a family of Dirichlet boundary value problems, involving differential operators in divergence form, on a domain equipped with a Finsler metric is investigated. Solutions are shown to converge uniformly to the distance function to the boundary of the domain, which takes into account the Finsler norm involved in the equation. This implies that a well-known result in the analysis of problems modeling torsional creep continues to hold in this more general setting.