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1. Introduction

The theory of functional calculi forms a basis for the study of sectorial operators and

semigroup generators. In particular, two functional calculi were used extensively in the

research on operator semigroups and sectorial operators during the past 50 years. One

of them, the Hille–Phillips (HP) functional calculus for semigroup generators, probably
stemmed from the foundational monograph [37], and it became an indispensable part of

semigroup theory. The systematic approach to the other one, the holomorphic functional

calculus for sectoral operators, was initiated by McIntosh and his collaborators in the
1980s. Though the two calculi appeared to be very useful in applications, the operator

norm estimates within them are often problematic. The estimates within the HP-calculus

are direct but rather crude, and the task of getting bounds within the holomorphic
functional calculus is a priori cumbersome because the calculus is not, in general, a

bounded Banach algebra homomorphism.

To circumvent those problems, a number of additional tools and methods appeared in

the literature. In particular, the advanced notions and techniques related to bounded
H∞-calculus, R-boundedness, Fourier multipliers and transference were developed in

depth, and one may consult [38], [41] and [35] for many of these function-theoretical

developments. Moreover, various implications of positivity of functions and their deriva-
tives (completely monotone, Bernstein, NP+-functions) were adjusted to the operator-

theoretical setup. For clarification of the role of positivity, see [50], [31] and [6], for

example.
Recently, in [7], a new functional calculus was constructed, the so-called B-calculus.

First of all, the B-calculus offers a simple and efficient route to operator norm estimates

for functions of semigroup generators, thus unifying a number of estimates in the literature
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and leading to new ones. No supplementary arguments are required and the estimates
underline the strength of the calculi. Moreover, the B-calculus possesses all attributes of
classical functional calculi, see [7]. When combined properly they lead to new spectral

mapping theorems and generalisations of fundamentals of semigroup theory; see [8]. To
put our results into a proper context and to use some of the B-calculus properties in the

sequel, we briefly recall the setup for the B-calculus; see [7] for more details.

Let B be the algebra of holomorphic functions on the right half-plane C+ such that

‖f‖B0
:=

∫ ∞

0

sup
β∈R

|f ′(α+ iβ)|dα <∞. (1.1)

These functions have been considered in some detail in [7] (see also [53]). In particular,
every f ∈ B belongs to H∞(C+)∩C(C+), and B is a Banach algebra with the norm

‖f‖B := ‖f‖∞+‖f‖B0
. (1.2)

Moreover, the algebra B modulo constants is isomorphic to the holomorphic Besov space
B+

∞,1(R); see [7, Proposition 6.2]. In the setting of power bounded operators on Hilbert

spaces, the unit disc counterpart of B was employed for the study of functional calculi in

[47].
Let A be a densely defined closed operator on a Banach space X such that σ(A)⊆ C+

and

sup
α>0

α

∫
R

|〈(α+ iβ+A)−2x,x∗〉|dβ <∞ (1.3)

for all x ∈ X and x∗ ∈ X∗. This class of operators includes two substantial subclasses,

namely, the negative generators of bounded C0-semigroups on Hilbert spaces X and

the negative generators of (sectorially) bounded holomorphic C0-semigroups on Banach
spaces X. On the other hand, every operator in the class is the negative generator of a

bounded C0-semigroup.

The study of functional calculus based on the algebra B was initiated in [57] for
generators of bounded semigroups on Hilbert spaces and in [53] for generators of

holomorphic semigroups. These works adapted and extended the approach from [47] to

a more demanding and involved setting of unbounded operators. Most researchers were
unaware of [57] until it became accessible a few years ago. Meanwhile, the line of research

put forward in [57] and [53] was continued in [36] and [51] proceeding in two different

directions (additional related references can be found in [7]). In [36], by means of a new

transference technique, counterparts of the results from [53] were proved in the framework
of bounded semigroups on Hilbert space and certain substantial subclasses of B, and [51]

offered a number of generalisations and improvements of estimates from [53]. Only [51]

and [53] considered all functions in B, applied to generators of bounded holomorphic
semigroups in both papers. In [7], we introduced a bounded B functional calculus for all

operators satisfying (1.3), and we extended the theory in [8].

For f ∈ B, set

〈f(A)x,x∗〉= f(∞)〈x,x∗〉− 2

π

∫ ∞

0

α

∫
R

f ′(α+ iβ)〈(α− iβ+A)−2x,x∗〉dβ dα (1.4)
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for all x ∈X and x∗ ∈X∗, where f(∞) = limRez→∞ f(z). Using (1.3) and the definition

of B (and the closed graph theorem), it is easy to show that f(A) is a bounded linear

mapping from X to X∗∗ and that the linear mapping

Φ̃A : B →L(X,X∗∗), f 
→ f(A),

is bounded.

It was discovered in [7] that much more is true. If A belongs to any of the classes of

semigroup generators mentioned above, then the formula (1.4) defines a bounded algebra

homomorphism

ΦA : B → L(X), ΦA(f) := f(A).

It is natural to call the homomorphism ΦA the (B-)calculus of A. It was proved in [7]

that ΦA possesses a number of useful properties. In particular, it admits the spectral

inclusion (spectral mapping, in the case of bounded holomorphic semigroups) theorem

and a convergence lemma of appropriate form. The utility of the B-calculus depends on the
facts that it (strictly) extends the HP-calculus and it is compatible with the holomorphic

functional calculi for sectorial and half-plane type operators.

Moreover, the B-calculus ΦA is the only functional calculus that one can define for A
satisfying (1.3) and for functions in B. Indeed, let A be an operator on X with dense

domain, and assume that σ(A) ⊆ C+. A (bounded) B-calculus for A is, by definition, a

bounded algebra homomorphism Φ : B→ L(X) such that Φ((z+ ·)−1) = (z+A)−1 for all
z ∈ C+. As shown in [8], if A admits a B-calculus, then the resolvent assumption (1.3)

holds, and the calculus is ΦA.

Though the B-calculus is optimal and unique for generators of Hilbert space semigroups,

the situation is far from being so for generators of bounded holomorphic semigroups
on Banach spaces (as this article will, in particular, show). Thus, using the B-calculus
ideology as a guiding principle, it is natural to try to extend it beyond the Besov

algebra B keeping all of its useful properties such as availability of good norm estimates,
spectral mapping theorems, convergence lemmas, compatibility with the other calculi,

etc. Moreover, it is desirable to cover all sectorial operators regardless of their sectoriality

angle.
In this article we will construct some functional calculi encompassing wider classes

of functions (including some with singularities on iR) and providing finer estimates for

all negative generators of (sectorially) bounded holomorphic semigroups, and eventually

for all sectorial operators. Functional calculi for generators of some classes of bounded
holomorphic semigroups were constructed in [28], [27], [25], [26] and [40]. However, most

of the results in those papers concern sectorial operators of angle zero, and the approaches

there are based on fine estimates for the corresponding semigroups rather than fine
analytic properties of resolvents.

Let A be a densely defined sectorial operator of sectorial angle θA ∈ [0,π) on a Banach

space X, and let Sect(θ) denote the class of all sectorial operators of angle θ for θ ∈ [0,π).
It is well-known that −A is the generator of a (sectorially) bounded holomorphic C0-

semigroup on X if and only if A is sectorial and θA < π/2 (we may write A ∈ Sect(π/2−)

for this class). In this article we address the question of whether the B-calculus for A can
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be extended to more functions. Because the resolvent of A satisfies the estimate

Mψ(A) := sup
z∈Σπ−ψ

‖z(z+A)−1‖<∞,

for all ψ ∈ (θA,π), a direct way to define an appropriate function algebra would be to

introduce a Banach space of functions f that are holomorphic on sectors Σψ := {z ∈ C :
|arg(z)|< ψ} such that

‖f‖ψ :=

∫
∂Σψ

|f(z)|
|z| |dz|<∞. (1.5)

In order to apply this to all A ∈ Sect(π/2−), f should be holomorphic on C+ and the

assumption (1.5) should hold for all ψ ∈ (0,π/2), and in order to provide an estimate that
is uniform in θ it is desirable to have supψ∈(0,π/2) ‖f‖ψ <∞. To our knowledge, no spaces

of this type have been studied systematically in the literature, although they appear

naturally in [38, Appendix H2 and Chapter 10.2], [34, Section 6] and [33, Appendix C].

This class of functions is strictly included in each of the spaces Ds,s > 0 (see Proposition
4.15 and a discussion following it), which we now define.

To define a functional calculus for all A ∈ Sect(π/2−), we let Ds,s >−1, be the linear

space of all holomorphic functions f on C+ such that

‖f‖Ds,0
:=

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
(α2+β2)(s+1)/2

dβ dα <∞. (1.6)

If f ∈ Ds, then there exists a finite limit f(∞) := lim|z|→∞, z∈Σψ
f(z) for all ψ ∈ (0.π/2).

For every s >−1 the space Ds equipped with the norm

‖f‖Ds
:= |f(∞)|+‖f‖Ds,0

, f ∈ Ds,

is a Banach space but not an algebra. However, the spaces Ds increase with s, and we

prove in Lemma 3.21 that

D∞ :=
⋃

s>−1

Ds

is an algebra.

Let f ∈ D∞, so f ∈ Ds for some s >−1, and let A be sectorial with θA < π/2. Define

fDs
(A) := f(∞)− 2s

π

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)(A+α− iβ)−(s+1) dβ dα. (1.7)

Then fDσ
(A) = fDs

(A) whenever σ > s. The following result sets out other properties of

this functional calculus. The proof will be given in Section 7.

Theorem 1.1. Let A be a densely defined closed operator on a Banach space X such that

σ(A)⊂ C+. The following are equivalent:

(i) A ∈ Sect(π/2−).

(ii) There is an algebra homomorphism ΨA :D∞ → L(X) such that

ΨA((z+ ·)−1) = (z+A)−1, z ∈ C+,
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and ΨA is bounded in the sense that there exist constants Cs, s >−1, such that, for
every f ∈ Ds,

‖ΨA(f)‖ ≤ Cs‖f‖Ds
. (1.8)

When these properties hold, ΨA is unique, and it is defined by the formula (1.7)

ΨA :D∞ 
→ L(X), ΨA(f) = fDs
(A), f ∈ Ds.

The homomorphism ΨA will be called the D-calculus for A. It will be shown in Section 7

that the D-calculus is compatible with the HP-calculus and the holomorphic calculus for

sectorial operators, and a spectral mapping theorem is given in Theorem 9.3. Corollary 7.8
provides a version of this functional calculus based on the Banach algebra H∞(C+)∩Ds

for a fixed value of s.

The D-calculus defined as above does not take into account the sectoriality angle of
A ∈ Sect(π/2−). However, it can be used to construct a functional calculus that does not

have this drawback. To achieve this aim we introduce the Hardy–Sobolev spaces Hψ, on

sectors Σψ. First, for any ψ ∈ (0,π), we define the Hardy space H1(Σψ) as the linear space
of functions f ∈Hol(Σψ) such that

‖f‖H1(Σψ) := sup
|ϕ|<ψ

∫ ∞

0

(
|f(teiϕ)|+ |f(te−iϕ)|

)
dt <∞. (1.9)

Note that H1(Σπ/2) coincides with the classical Hardy space H1(C+) in the right half-

plane C+. It is well-known that (H1(Σψ),‖ · ‖H1(Σψ)) is a Banach space, and every

f ∈H1(Σψ) has a boundary function on ∂Σψ. The boundary function exists as the limit of
f in both an L1-sense and a pointwise (almost everywhere, a.e.) sense. Moreover, the norm

of f in H1(Σψ) is attained by the L1-norm of its boundary function. See Subsection 4.1

for a succinct approach to the Hardy spaces on sectors.

The space H1(Σψ) induces the corresponding Hardy–Sobolev space Hψ on Σψ as

Hψ :=
{
f ∈Hol(Σψ) : f

′ ∈H1(Σψ)
}
.

Any function f ∈ Hψ has a finite limit f(∞) := limt→∞ f(t); moreover, f ∈ H∞(Σψ).
Then Hψ becomes a Banach algebra in the norm

‖f‖Hψ
:= ‖f‖H∞(Σψ)+‖f ′‖H1(Σψ), f ∈Hψ.

The relationship between these spaces and the spaces Ds for all s > −1 is set out in
Corollary 4.3 and Lemma 4.13; in particular, for each s > −1, Hπ/2 is contained in Ds,

and Ds is embedded in Hψ for ψ < π/2.

To make use of the angle of sectoriality of A, we can adjust the D-calculus to sectors
as follows. If f ∈ Hψ where ψ ∈ (θA,π), γ = π/(2ψ) and f1/γ(z) := f(z1/γ), then f ′

1/γ ∈
H1(C+) and f1/γ(∞) = f(∞), and hence f1/γ ∈D0. This observation allows us to extend

the D-calculus to the class of all sectorial operators and makes the next definition (based

on the D-calculus) natural and plausible.
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If A is sectorial and ψ ∈ (θA,π), define

fH(A) := f(∞)− 1

π

∫ ∞

0

∫ ∞

−∞
f ′
1/γ(α+ iβ)(Aγ +α− iβ)−1 dβ dα. (1.10)

One can prove (see (8.2)) that

‖fH(A)‖ ≤ |f(∞)|+
Mπ/2(A

γ)

π
‖f1/γ‖D0,0

≤ |f(∞)|+Mπ/2(A
γ)‖f‖Hψ

. (1.11)

Then (1.10) and (1.11) hold for any γ ∈ (1,π/(2ψ)), and the definition of fH(A) does
not depend on the choice of ψ.

Now we are able to formalise our extension of the D-calculus as follows.

Theorem 1.2. Let A be a densely defined operator on a Banach space X such that

σ(A)⊂ Σθ, where θ ∈ [0,π). The following are equivalent:

(i) A ∈ Sect(θ).

(ii) For each ψ ∈ (θ,π), there is a bounded Banach algebra homomorphism ΥA :Hψ 
→
L(X) such that ΥA((z+ ·)−1) = (z+A)−1, z ∈ Σπ−ψ.

When these properties hold, the homomorphism ΥA is unique for each value of ψ, and it
is defined by the formula (1.10):

ΥA :Hψ → L(X), ΥA(f) = fH(A), f ∈Hψ.

The homomorphism ΥA will be called the H-calculus for A.
The D-calculus can be given a more succinct form, by replacing (1.10) with the

somewhat more transparent formula (1.12) below, inspired by results in [12].

Theorem 1.3. Let A ∈ Sect(θ), θ < ψ < π and γ = π/(2ψ). For f ∈Hψ, let

fψ(s) :=
f(eiψt)+f(e−iψt)

2
, t≥ 0.

Then

fH(A) = f(∞)− 2

π

∫ ∞

0

f ′
ψ(t)arccot(A

γ/tγ)dt (1.12)

where the integral converges in the uniform operator topology, and

‖fH(A)‖ ≤ |f(∞)|+Mψ(A)‖f ′
ψ‖L1(R+) ≤Mψ(A)‖f‖Hψ

.

Thus, ‖ΥA‖ ≤Mψ(A).

See Subsection 8.2 for details. The D-calculus and the H-calculus possess natural
properties of functional calculi such as spectral mapping theorems and convergence

lemmas. These properties are studied in Section 9.

The strength of the constructed calculi is illustrated by several examples showing that
they lead to sharper estimates than those offered by other calculi (see Section 12 for one

example). Moreover, the theory developed in this article is successfully tested by deriving

several significant estimates for functions of sectorial operators from the literature. In
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particular, in Section 10, we provide a proof of permanence of the class of sectorial
operators under subordination and we revisit a few basic results from semigroup theory.

In developing the D- and H-calculi we prove a number of results of independent interest

in function theory. Apart from the theory of the spaces Ds and Hψ, their reproducing
formulas and boundedness of the associated operators elaborated in this article, we

emphasise the property (4.9) in Corollary 4.3 yielding isometric coincidence of spaces

of Hardy type, Theorem 4.12 on Laplace representability of Hardy–Sobolev functions

and Theorem 5.10 on the density of rational functions in Hardy–Sobolev spaces.
Added Note: During the preparation of this article, we became aware of a paper by

Arnold and Le Merdy [5], who considered negative generators of bounded C0-semigroups

on Hilbert space. Inspired by ideas in [47] for the discrete case, they extended the
B-calculus for those operators to a strictly larger Banach algebra A in which B is

continuously embedded. Their extension is complementary to our extensions to the D
and H-calculi for negative generators of bounded holomorphic C0-semigroups on Banach
spaces. We are grateful to Loris Arnold for pointing out several defects in the original

version of this article.

2. Preliminaries

Notation

Throughout the article, we will use the following notation:

R+ := [0,∞),

C+ := {z ∈ C : Rez > 0}, C+ = {z ∈ C : Rez ≥ 0},
Σθ := {z ∈ C : z �= 0,|argz|< θ} for θ ∈ (0,π).

For f : C+ → C, we say that f has a sectorial limit at infinity if

lim
|z|→∞,z∈Σψ

f(z)

exists for every ψ ∈ (0,π/2). Similarly, f has a sectorial limit at 0 if

lim
|z|→0,z∈Σψ

f(z)

exists for every ψ ∈ (0,π/2). We say that f has a half-plane limit at infinity if

lim
Rez→∞

f(z)

exists in C. We say that f has a full limit at infinity or at zero if

lim
|z|→∞,z∈C+

f(z) or lim
|z|→0,z∈C+

f(z)

exists in C. The notation f(∞) and f(0) may denote a sectorial limit, a half-plane limit
or a full limit, according to context.

For a ∈ C+, we define functions on C by

ea(z) = e−az; ra(z) = (z+a)−1, z �=−a.
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We use the following notation for spaces of functions or measures and transforms on R

or R+:

Hol(Ω) denotes the space of holomorphic functions on an open subset Ω of C, H∞(Ω)

is the space of bounded holomorphic functions on Ω, and ‖f‖H∞(Ω) = supΩ |f(z)|.
Hp(C+), 1≤ p≤∞, are the standard Hardy spaces on the (right) half-plane.

M(R+) denotes the Banach algebra of all bounded Borel measures on R+ under

convolution. We identify L1(R+) with a subalgebra of M(R+) in the usual way. We

write Lμ for the Laplace transform of μ ∈M(R+).

LM is the HP algebra, LM := {Lμ : μ∈M(R+)}, with the norm ‖Lμ‖HP := |μ|(R+),
and LL1 := {Lf : f ∈ L1(R+)}.
dS denotes area measure on C+.

For a Banach space X, X∗ denotes the dual space of X and L(X) denotes the space

of all bounded linear operators on X. The domain, spectrum and resolvent set of an
(unbounded) operator A on X are denoted by D(A), σ(A) and ρ(A), respectively.

If (X ,‖ ·‖X ) and (Y,‖ ·‖Y) are normed spaces of holomorphic functions on domains ΩX
and ΩY , we will use notation as follows:

Y i
↪→X if ΩY =ΩX , Y is a subset of X and the inclusion map is continuous;

Y ⊂ X if ΩY =ΩX , Y is a subset of X and Y inherits the norm from X ;

Y r
↪→ X if ΩY ⊃ ΩX , and the restriction map f 
→ f |ΩX is a continuous map from

Y →X .

Boundaries of all of the sectors appearing in this article will be oriented from top to
bottom.

Elementary inequalities

We will need the following elementary lemma, which gives lower bounds for |z+λ| in
terms of |z| and |λ|, for z, λ ∈ C.

Lemma 2.1. (i) Let z = |z|eiψ and λ= |λ|eiϕ ∈ C, where |ψ−ϕ| ≤ π. Then

|z+λ| ≥ cos

(
ψ−ϕ

2

)
(|z|+ |λ|). (2.1)

(ii) Let z ∈ Σψ and λ ∈ Σϕ, where ψ,ϕ > 0 and ϕ+ψ < π. Then

|z+λ| ≥ cos

(
ψ+ϕ

2

)
(|z|+ |λ|). (2.2)

(iii) Let z = |z|eiψ and λ= |λ|eiϕ ∈ C, where |ψ|< π/2 and |ϕ| ≤ π/2. Then

|z+λ| ≥ cosψ |λ| (2.3)

and

|z+λ| ≥ cosψ |z|. (2.4)
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Proof. For (2.1), we may assume that ϕ ≥ ψ and let θ := (π−ϕ+ψ)/2 ∈ [0,π/2]. By

applying a rotation of C we may further assume that ϕ= π−θ and ψ = θ. Then

|z+λ| ≥ Imz+Imλ= sinθ(|z|+ |λ|) = cos

(
ϕ−ψ

2

)
(|z|+ |λ|).

The inequality (2.2) follows from (2.1), because ψ+ϕ is the maximum value of |ψ′−ϕ′|
for ψ′ ∈ [−ψ,ψ] and ϕ′ ∈ [−ϕ,ϕ].

The inequality (2.4) is obtained by considering Re(z+λ). For the inequality (2.3), we
assume without loss of generality that sinϕ≥ 0. Note that

|λ+ z|2−|λ|2 cos2ψ = (|z|+ |λ|cos(ϕ−ψ))
2
+ |λ|2

(
sin2ϕ− cos2(ϕ−ψ)

)
(2.5)

= |z|2+2|z| |λ|cos(ϕ−ψ)+ |λ|2 sin2ϕ.

If cos(ϕ−ψ)< 0, we have

sinϕ−|cos(ϕ−ψ)|= sinϕ(1+sinψ)+cosϕcosψ ≥ 0.

Then the expression on the right-hand side of the first line of (2.5) is clearly nonnegative.
If cos(ϕ−ψ) ≥ 0, then the expression in the second line is clearly nonnegative. This

completes the proof.

Beta function

The Beta function appears in many places in the article. It is defined for s,t > 0 by

B(s,t) =B(t,s) :=

∫ 1

0

τs−1(1− τ)t−1 dτ = 2

∫ π/2

0

cos2s−1ψ sin2t−1ψdψ.

In particular, for s >−1 we will use the relations

B

(
s+1

2
,
1

2

)
=

∫ π/2

−π/2

cossψdψ =

∫ ∞

−∞

dt

(1+ t2)(s+2)/2
=

√
πΓ((s+1)/2)

Γ(s/2+1)
;

see [48, items 2.5.3,(1) and 2.2.3,(5)]. We note also the following limit properties:

lim
s→−1

(s+1)B

(
s+1

2
,
1

2

)
= 2, lim

s→∞

√
sB

(
s+1

2
,
1

2

)
=
√
2π.

Proof conventions

We will make extensive use of the dominated convergence theorem, often for vector-valued
functions. With a few exceptions, we will not give details of the relevant dominating

functions, because they are usually easily identified.

We will also use the following elementary lemma on several occasions. See [21, p.21,
Lemma 1] for a proof.

Lemma 2.2. Let (Ω,μ) be a σ-finite measure space and (fn)n≥1 ⊂ Lp(Ω,μ), where p ∈
[1,∞). If fn → f0 a.e. and ‖fn‖Lp(Ω,μ) →‖f0‖Lp(Ω,μ), then ‖fn−f0‖Lp(Ω,μ) → 0 as n→∞.

We will use Vitali’s theorem several times, usually for holomorphic vector-valued

functions. We refer to the version given in [4, Theorem A.5].
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Let X be a Banach space of holomorphic functions on a domain ΩX such that the point
evaluations δz : f 
→ f(z), z ∈ ΩX , are continuous on X . Let (Ω,μ) be either an interval

in R with length measure or an open set in C with area measure and F : Ω → X be a

continuous function such that
∫
Ω
‖F (t)‖X dμ(t)<∞. Then the integral

G :=

∫
Ω

F (t)dμ(t)

exists as a Bochner integral in X and it can be approximated by Riemann sums. It follows

that G belongs to the closed linear span of {F (t) : t ∈ Ω} in X .

Now assume that F : Ω→X is locally bounded, where Ω is an open set in C, and that
λ 
→ F (λ)(z) is holomorphic on Ω for all z ∈ ΩX . We will use the fact that F : Ω → X
is holomorphic in the vector-valued sense, without further comment. The result at this

level of generality can be seen from [4, Corollary A.7], using the point evaluations as
separating functionals. An alternative is to show that F is continuous and then apply

Morera’s theorem. If the definition of F is by an integral formula, it may also be possible

to apply a standard corollary of the dominated convergence theorem that leads to an

integral formula for the derivative F ′.

3. The Banach spaces Ds and their reproducing formulas

In this section we introduce some spaces of holomorphic functions to which we will extend

the B-calculus of operators in Section 7 onwards.

3.1. The spaces Vs

Let s > −1, z = α+ iβ, and let Vs be the Banach space of (equivalence classes of)

measurable functions g : C+ → C such that the norm

‖g‖Vs
: =

∫
C+

(Rez)s|g(z)|
|z|s+1

dS(z) (3.1)

=

∫ ∞

0

αs

∫ ∞

−∞

|g(α+ iβ)|
(α2+β2)(s+1)/2

dβ dα

=

∫ π/2

−π/2

cossϕ

∫ ∞

0

|g(ρeiϕ)|dρdϕ

is finite, where S is the area measure on C+. Note that

Vs ⊂ Vσ and ‖g‖Vσ
≤ ‖g‖Vs

, g ∈ Vs, s < σ, (3.2)

and ∫
Σψ

|g(z)|
|z| dS(z)≤max

{
1,

1

cossψ

}
‖g‖Vs

, g ∈ Vs, ψ ∈ (0,π/2). (3.3)

The following property of functions from Vs is an essential element in the arguments
that lead to the representations for functions in Vs in Proposition 3.7 and for Ds in

Corollary 3.10, and eventually to the definition of a functional calculus for operators in

(7.5).
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Lemma 3.1. Let g ∈ Vs be holomorphic, where s > −1. For every k ≥ 1 and every ψ ∈
(0,π/2),

lim
|z|→∞, z∈Σψ

zkg(k−1)(z) = 0. (3.4)

Proof. Let g ∈ Vs be holomorphic, ψ ∈ (0,π/2), ψ′ = (π/2 + ψ)/2 and bψ =

sin((π/2−ψ)/2) = cosψ′. If z ∈ Σψ, then

{λ ∈ C : |λ− z| ≤ bψ|z|} ⊂ {λ ∈ Σψ′ : |λ| ≥ (1− bψ)|z|}.

Let r ∈ (0,bψ|z|). By Cauchy’s integral formula for derivatives,

g(k−1)(z) =
(k−1)!

2πi

∫
{λ: |λ−z|=r}

g(λ)

(λ− z)k
dλ.

Multiplying by rk and integrating with respect to r over (0,bψ|z|) gives

(bψ|z|)k+1

k+1
|g(k−1)(z)| ≤ (k−1)!

2π

∫
{λ:|λ−z|≤bψ|z|}

|g(λ)|dS(λ),

and then

|z|k|g(k−1)(z)| ≤ (k+1)(k−1)!(1+ bψ)

2πbk+1
ψ

∫
{λ∈Σψ′ :|λ|≥(1−bψ)|z|}

|g(λ)|
|λ| dS(λ).

It now follows from (3.3) that |zkg(k−1)(z)| → 0 as |z| →∞, z ∈ Σψ.

3.2. The spaces Ds and the operators Qs

We now define a linear operator Qs on Vs, s >−1. It will play a role similar to the operator

Q on W considered in [8, Section 3], where W is the Banach space of all (equivalence

classes of) measurable functions g : C+ → C such that

‖g‖W :=

∫ ∞

0

sup
β∈R

|g(α+ iβ)|dα <∞. (3.5)

Indeed, the definition of Q1 is formally the same as the definition of Q in [8], but the
domain V1 of Q1 is larger than W.

For g ∈ Vs, let

(Qsg)(z) :=−2s

π

∫ ∞

0

αs

∫ ∞

−∞

g(α+ iβ)

(z+α− iβ)s+1
dβ dα, z ∈ C+∪{0}. (3.6)

By (2.3), the integral is absolutely convergent, and

|(Qsg)(z)| ≤
2s‖g‖Vs

π coss+1ψ
, z ∈ Σψ, ψ ∈ (0,π/2). (3.7)

The dominated convergence theorem implies that Qsg is continuous on C+, with sectorial

limits at infinity and 0:

lim
|z|→∞, z∈Σψ

(Qsg)(z) = 0, ψ ∈ (0,π/2), (3.8)
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and

lim
|z|→0, z∈Σψ

(Qsg)(z) = (Qsg)(0), ψ ∈ (0,π/2). (3.9)

Thus, Qsg is bounded and continuous on Σψ for every ψ ∈ (0,π/2). Moreover, Qsg is

holomorphic on C+ and

(Qsg)
′(z) = (s+1)

2s

π

∫ ∞

0

αs

∫ ∞

−∞

g(α+ iβ)

(z+α− iβ)s+2
dβ dα, z ∈ C+. (3.10)

Using this, (2.3) and (2.4), we obtain that

|(Qsg)
′(z)| ≤ (s+1)2s

π coss+2ψ |z| ‖g‖Vs
, z ∈ Σψ, (3.11)

and

|z(Qsg)
′(z)| ≤ (s+1)2s

π coss+2ψ

∫
C+

|z|(Reλ)s |g(λ)|
|z+λ||λ|s+1

dS(λ), z ∈ Σψ.

Using the dominated convergence theorem again, we obtain

lim
|z|→0,z∈Σψ

z(Qsg)
′(z) = 0. (3.12)

We now give another formula for Qs. Let s = n+ δ > −1 where n ∈ N∪{−1,0} and

δ ∈ [0,1), and let

Cs :=

∫ ∞

0

dt

(t+1)n+2tδ
=

∫ 1

0

(1− τ)s

τ δ
dτ =B(1− δ,s+1). (3.13)

Then ∫ ∞

0

dt

(λ+ t)n+2tδ
=

Cs

λs+1
, λ ∈ C+.

Indeed, both sides of this equation are holomorphic functions of λ∈C+, and they coincide
for λ ∈ (0,∞), so they coincide for all λ ∈ C+, by the identity theorem for holomorphic

functions. Putting λ= z+α− iβ, we obtain

(Qsg)(z) =− 2s

πCs

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

αs g(α+ iβ)dβ dα

(z+α− iβ+ t)n+2

dt

tδ
, z ∈ C+. (3.14)

For s >−1 let Ds be the linear space of all holomorphic functions f on C+ such that

f ′ ∈ Vs,

equipped with the semi-norm

‖f‖Ds,0
:= ‖f ′‖Vs

, f ∈ Ds.

If σ > s > −1, then it is immediate from (3.2) that Ds ⊂ Dσ. We will exhibit some
functions in Ds later in this section and in Subsection 3.3.

In the rest of this section we will obtain a reproducing formula (3.29) for functions from

Ds and we will describe some basic properties that will be relevant for the sequel. To this
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aim, we first define and study the behaviour of operators Qs on the scale of Ds-spaces.
Recall that in [8, Proposition 3.1] we showed that Q maps W into B. However Qs does

not map the whole of Vs into Ds. For s >−1, a function g ∈ Vs for which Qsg /∈ Ds can

be defined as follows:

g(ρeiϕ) :=
(
coss+1ϕ(ρ− sinϕ) log2(ρ− sinϕ)

)−1
,

1< ρ < 2− sinϕ, π/4< ϕ< π/2,

and g(z) = 0 for all other points in C+. We do not give details in this article. Instead, we

will show in Propositions 3.6 and 3.7 that Qs maps Vs boundedly into Dσ for any σ > s,

and it maps holomorphic functions in Vs into Ds. We need the following auxiliary lemma,
which will be useful in a number of instances.

Lemma 3.2. Let h ∈ L1[0,1]∩L∞[1/2,1] be a positive function. Let s >−1, β > 1/2 and

Gh,β,s(ϕ) :=

∫ π/2

−π/2

cossψ

∫ 1

0

h(t)dt

(t2+2tcos(ϕ+ψ)+1)β
dψ, ϕ ∈ (−π/2,π/2). (3.15)

(a) If 2β−s−2< 0, then

Kh,β,s := sup
|ϕ|<π/2

Gh,β,s(ϕ)<∞. (3.16)

(b) If 2β−s−2> 0, then

K̃h,β,s := sup
|ϕ|<π/2

cos2β−s−2ϕGh,β,s(ϕ)<∞. (3.17)

Proof. Because Gh,β,s(−ϕ) =Gh,β,s(ϕ), we may assume that ϕ ∈ [0,π/2). Now

Gh,β,s(ϕ) =

∫ 0

−π/2

cossψ

∫ 1

0

h(t)dt

(t2+2tcos(ϕ+ψ)+1)β
dψ

+

∫ π/2

0

cossψ

∫ 1

0

h(t)dt

(t2+2tcos(ϕ+ψ)+1)β
dψ

=:G−
h,β,s(ϕ)+G+

h,β,s(ϕ),

and we estimate these two integrals separately.
Because ϕ ∈ [0,π/2), β > 1/2 and s >−1, we have

G−
h,β,s(ϕ)≤

∫ 0

−π/2

cossψdψ

∫ 1

0

h(t)dt=
‖h‖L1[0,1]

2
B

(
s+1

2
,
1

2

)
.

For the second integral, note that if φ= ϕ+ψ ∈ [0,π),

t2+2tcosφ+1≥
{

1
4, t ∈ [0,1/2],

(1− t)2+1+cosφ, t ∈ [1/2,1].
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Hence, ∫ 1

0

h(t)

(t2+2tcosφ+1)β
dt

≤ 4β
∫ 1/2

0

h(t)dt+

∫ 1

1/2

h(t)

((t−1)2+(1+cosφ))β
dt

≤ 4β‖h‖L1[0,1/2]+‖h‖L∞[1/2,1]

∫ ∞

0

dτ

(τ2+2cos2(φ/2))β

≤ Ch,β

cos2β−1(φ/2)
,

for some constant Ch,β > 0. Replacing ϕ by π/2−ϕ and ψ by π/2−ψ and using

ω ≥ sinω ≥ 2

π
ω, ω ∈ (0,π/2),

we infer that if ϕ ∈ [0,π/2), then

G+
h,β,s(π/2−ϕ)≤ Ch,β

∫ π/2

0

sinsψ

sin2β−1((ϕ+ψ)/2)
dψ

≤ Ch,βπ
2β−1

∫ π/2

0

ψs

(ϕ+ψ)2β−1
dψ.

In case (a), when 2β−s−2< 0, we have∫ π/2

0

ψs

(ϕ+ψ)2β−1
dψ ≤

∫ π/2

0

ψs−2β+1 dψ =
πs−2β+2

(s−2β+2)2s−2β+2
<∞.

In case (b), when 2β−s−2> 0, we obtain∫ π/2

0

ψs

(ϕ+ψ)2β−1
dψ ≤ ϕs+2−2β

∫ ∞

0

ts

(t+1)2β−1
dt,

and hence

cos2β−s−2(π/2−ϕ)Gh,β,s(π/2−ϕ)≤ ϕ2β−s−2Gh,β,s(π/2−ϕ)

≤ Ch,βπ
2β−1

∫ ∞

0

ts

(t+1)2β−1
dt <∞,

for some constant Ch,β > 0.

Let Ds,0 be the space of all functions f ∈ Ds such that f has a sectorial limit 0 at

infinity. Then (Ds,0,‖ · ‖Ds,0
) is a normed space, and we will see in Corollary 3.11 that it

is a Banach space.
The following basic examples will play roles in several estimates later in the article. We

start with the resolvent functions and their powers.

Example 3.3. Let λ= |λ|eiϕ ∈C+, and rλ(z) = (z+λ)−1, z ∈C+. Let γ > 0, and consider

rγλ(z) := (z+λ)−γ, z ∈ C+.
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Let s >−1. Then

‖rγλ‖Ds,0
= γ

∫ π/2

−π/2

cossψ

∫ ∞

0

dρ

|ρeiψ + |λ|eiϕ|γ+1
dψ (3.18)

=
γ

|λ|γ
∫ π/2

−π/2

cossψ

∫ ∞

0

dρ

|ρ+ ei(ϕ−ψ)|γ+1
dψ

=
γ

|λ|γ
∫ π/2

−π/2

cossψ

∫ 1

0

1+ tγ−1

(t2+2tcos(ϕ+ψ)+1)(γ+1)/2
dtdψ,

where we have put t= ρ for ρ≤ 1 and t= ρ−1 for ρ > 1. Now we apply Lemma 3.2 with
h(t) = 1+ tγ−1, β = (γ+1)/2, so 2β−s−2 = γ−s−1. Thus, we obtain

‖rγλ‖Ds,0
≤

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

γKh,(γ+1)/2,s

|λ|γ , s > γ−1>−1,

γK̃h,(γ+1)/2,s

|λ|γ cosγ−s−1ϕ
, γ−1> s >−1.

(3.19)

In particular, taking γ = 1 and a fixed s > 0,

‖rλ‖Ds,0
=

∫ π/2

−π/2

∫ ∞

0

cossψ

|λ+ρeiψ|2 dρdψ ≤ Cs

|λ|, λ ∈ C+. (3.20)

This estimate will play a crucial role in the proof of Theorem 1.1.

Next we consider some functions that appear frequently in the studies of holomorphic

C0-semigroups.

Example 3.4. Let

fν(z) := zνe−z, z ∈ C+, ν ≥ 0.

We will show here that fν ∈ Ds if and only if s > ν. Moreover, if s > ν, then

‖fν‖Ds,0
≤ 2B

(
s−ν

2
,
1

2

)
Γ(ν+1). (3.21)

This estimate will be crucial for operator estimates in Section 10.

We have

f ′
ν(z) = e−z

(
νzν−1− zν

)
and

‖fν‖Ds,0
=

∫ π/2

−π/2

cossϕ

∫ ∞

0

e−ρcosϕρν−1
∣∣ρeiϕ−ν

∣∣ dρdϕ
=

∫ π/2

−π/2

coss−ν−1ϕ

∫ ∞

0

e−rrν−1|reiϕ−ν cosϕ|drdϕ.

We use the estimates

r|sinϕ| ≤ |reiϕ−ν cosϕ| ≤ r+ν.
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If s > ν, we obtain

‖fν‖Ds,0
≤ 2

∫ π/2

0

coss−ν−1ϕdϕ

∫ ∞

0

e−rrν−1(r+ν)dr

= 2B

(
s−ν

2
,
1

2

)
Γ(ν+1).

If s≤ ν, then

‖fν‖Ds,0
≥ 2

∫ π/2

0

coss−ν−1ϕ sinϕdϕ

∫ ∞

0

e−τ τν dτ =∞.

This establishes the claims above.

Finally, we consider a function that will play an important role in our constructions of

functional calculi in Section 8.

Example 3.5. The function arccot is defined by

arccot(z) =
1

2i
log

(
z+ i

z− i

)
, z ∈ C+. (3.22)

Then |Rearccot(z)| ≤ π/2, arccot has sectorial limit 0 at infinity and its derivative is

−(z2+1)−1. It is easy to see that arccot ∈ Ds for all s >−1. For s= 0, we have

‖arccot‖D0,0
(3.23)

=

∫ π/2

−π/2

∫ ∞

0

dρ

|1+ρ2e2iϕ| dϕ=

∫ ∞

0

∫ π

0

dψ

(ρ4+2ρ2 cosψ+1)1/2
dρ

≤
√
π

∫ ∞

0

(∫ π

0

dψ

ρ4+2ρ2 cosψ+1

)1/2

dρ=
√
π

∫ ∞

0

(
π

|ρ4−1|

)1/2

dρ

=
π

2
B(1/4,1/2)< 3π.

See [48, item 2.5.16, (38)] for the evaluation of the integral with respect to ψ.

Proposition 3.6. Let σ > s >−1. The following hold:

(i) Ds,0 is continuously embedded in Dσ,0.

(ii) The restriction of Qσ to Vs is in L(Vs,Ds,0).

(iii) Qs ∈ L(Vs,Dσ,0).

Proof. The first statement is immediate from the definitions of the spaces and (3.2).
For the second statement, let g ∈ Vs. From (3.1), (3.10) and the second case of (3.19)

with γ = σ+1 and h(t) = 1+ tσ, we have

π

2σ(σ+1)
‖Qσg‖Ds,0

≤
∫ π/2

−π/2

cossψ

∫ ∞

0

∫ π/2

−π/2

cosσϕ

∫ ∞

0

tσ+1|g(teiϕ)|
|ρeiψ + te−iϕ|σ+2

dρdϕdtdψ
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=
1

σ+1

∫ π/2

−π/2

cosσϕ

∫ ∞

0

tσ+1‖rσ+1
te−iϕ‖Ds,0

|g(teiϕ)|dtdϕ

≤
∫ π/2

−π/2

cosσϕ

∫ ∞

0

K̃h,(σ+2)/2,s

cosσ−sϕ
|g(teiϕ)|dtdϕ

= K̃h,(σ+2)/2,s‖g‖Vs
.

This establishes the second statement.

For the third statement, the same estimation but with s and σ interchanged and using
the first case of (3.19) with γ = s+1 and h(t) = 1+ ts shows that

π

2s(s+1)
‖Qsg‖Dσ,0

≤Kh,(s+2)/2,σ‖g‖Vs
.

This establishes the third statement.

For insight on why ‖rσ+1
λ ‖Ds,0

appears in the proof above, we refer the reader to the

proof of Theorem 5.1.

Proposition 3.7. Let g ∈ Vs be holomorphic, where s > −1. Then Qsg ∈ Ds and

(Qsg)
′ = g.

Proof. First we consider the case when g ∈ Vn, where n ∈ N ∪ {0}. Then Qng is

holomorphic and (3.6) holds for s= n. It suffices to show that (Qng)
′ = g. Let

I(α) :=

∫ ∞

−∞

|g(α+ iβ)|
(α2+β2)(n+1)/2

dβ, α > 0,

J(β) :=

∫ ∞

0

αn|g(α+ iβ)|
(α2+β2)(n+1)/2

dα, β ∈ R.

From (3.1) and Fubini’s theorem, we see that
∫∞
0

αnI(α)dα <∞. Hence, I(α) <∞ for

almost all α > 0 and it follows that there exists a sequence (αj)j≥1 such that

lim
j→∞

αj =∞, lim
j→∞

I(αj) = 0.

Similarly,
∫∞
−∞J(β)dβ <∞, and so there exist sequences (β±

k )k≥1 such that

lim
k→∞

β±
k =±∞, lim

k→∞
J(β±

k ) = 0.

Let z ∈ C+ be fixed. Take α > 0 with I(α) < ∞, and let j be sufficiently large that
αj > 2α+Rez and k be sufficiently large that β−

k < Imz < β+
k . We may apply the Cauchy

integral formula around the rectangle with vertices α+ iβ±
k and αj + iβ±

k , and we obtain

2π

n!
g(n)(2α+ z)

=

∫ β+
k

β−
k

g(αj + iβ)

(αj + iβ− z−2α)n+1
dβ−

∫ β+
k

β−
k

g(α+ iβ)

(α+ iβ− z−2α)n+1
dβ

− i

∫ αj

α

g(s+ iβ−
k )

(s+ iβ−
k − z−2α)n+1

ds+ i

∫ αj

α

g(s+ iβ+
k )

(s+ iβ+
k − z−2α)n+1

ds.
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Letting k →∞, we obtain

(−1)n
2π

n!
g(n)(2α+ z) =

∫ ∞

−∞

g(α+ iβ)

(z+α− iβ)n+1
dβ−

∫ ∞

−∞

g(αj + iβ)

(z+2α−αj − iβ)n+1
dβ.

Letting j →∞, we obtain

(−1)n
2π

n!
g(n)(2α+ z) =

∫ ∞

−∞

g(α+ iβ)

(z+α− iβ)n+1
dβ. (3.24)

This holds for almost all α> 0. Substituting this into (3.6) and then integrating by parts

and using Lemma 3.1, we infer that

(Qng)(z) = (−1)n+1 2
n+1

n!

∫ ∞

0

αng(n)(2α+ z)dα (3.25)

=
(−1)n+1

n!

∫ ∞

0

αng(n)(α+ z)dα=−
∫ ∞

0

g(α+ z)dα.

By Lemma 3.1, the integral
∫∞
0

g′(α+ z)dα converges absolutely and uniformly for z in
compact subsets of C+. So, differentiating under the integral sign we get (Qng)

′ = g.

Now consider the case when s= n+δ >−1, where n ∈N∪{−1,0}, δ ∈ (0,1) and g ∈ Vs

is holomorphic. Then g ∈ Vn+1, n+1 ∈ N∪{0}, and (3.24) gives∫ ∞

−∞

g(α+ iβ)

(z+α− iβ+ t)n+2
dβ = (−1)n+1 2π

(n+1)!
g(n+1)(2α+ z+ t),

for z ∈ C+, t > 0 and almost all α > 0. We obtain from (3.14) and (3.13) that

Cs(Qsg)(z) =−2s

π

∫ ∞

0

∫ ∞

0

∫ ∞

−∞

αs g(α+ iβ)dβ dα

(z+α− iβ+ t)n+2

dt

tδ

= (−1)n
2s+1

(n+1)!

∫ ∞

0

∫ ∞

0

αsg(n+1)(2α+ z+ t)dα
dt

tδ

=
(−1)n

(n+1)!

∫ ∞

0

∫ ∞

t

(τ − t)sg(n+1)(τ + z)dτ
dt

tδ

= Cs
(−1)n

(n+1)!

∫ ∞

0

τn+1 g(n+1)(τ + z)dτ.

As in (3.25), it follows that (Qsg)
′ = g.

Corollary 3.8. If g ∈ Vs is holomorphic, then Qσg =Qsg for all σ ≥ s.

Proof. This is immediate from Proposition 3.7 and (3.8).

Remark 3.9. The proof of the property (Qng)
′ = g′,n ≥ 0, in Proposition 3.7 uses

just improper convergence of the integrals
∫∞
0

αkg(k)(α+ z)dα for 0 ≤ k ≤ n− 1. It is
instructive to note that if g ∈ Vn is holomorphic and z ∈ C+, then∫ ∞

0

αk|g(k)(α+ z)|dα <∞ (3.26)
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for all k ≥ 0. Indeed, if g ∈ Vn, then (3.26) holds for k = n by (3.24) and the

definition of norm in Vn. If n ≥ 1, then using Lemma 3.1, we infer that g(n−1)(α+ z) =

−
∫∞
α

g(n)(s+ z)ds, and hence by Fubini’s theorem,∫ ∞

0

αn−1|g(n−1)(α+ z)|dα≤ 1

n

∫ ∞

0

αn|g(n)(α+ z)|dα <∞.

Repeating this argument, we conclude that (3.26) holds also for k such that 0≤ k < n. If

k > n, then (3.26) follows directly from (3.24) and the inclusion Vn ⊂ Vk.

The following representation of functions in Ds has appeared in [2, Corollary 4.2] (see
also [3, Lemma 3.13.2] for the case s= 1).

Corollary 3.10. Let f ∈ Ds, s >−1. Then the sectorial limits

f(∞) := lim
z→∞, z∈Σψ

f(z), (3.27)

f(0) := lim
z→0, z∈Σψ

f(z) (3.28)

exist in C for every ψ ∈ (0,π/2). Moreover, for all z ∈ C+∪{0},

f(z) = f(∞)+(Qsf
′)(z) (3.29)

= f(∞)− 2s

π

∫ ∞

0

αs

∫ ∞

−∞

f ′(α+ iβ)dβ

(z+α− iβ)s+1
dα.

With f(0) defined as above, f ∈ C(Σψ) for every ψ ∈ (0,π/2).

Proof. It follows from Proposition 3.7 that (Qsf
′)′ = f ′. The statements follow from

(3.8) and (3.9).

Corollary 3.11. For every s >−1 the space Ds equipped with the norm

‖f‖Ds
:= |f(∞)|+‖f‖Ds,0

, f ∈ Ds,

is a Banach space.

Proof. Let s > −1 be fixed and let (fk)
∞
k=1 be a Cauchy sequence in Ds. Then (3.7)

and Vitali’s theorem imply that (Qsf
′
k)

∞
k=1 converges uniformly on each Σψ to a limit g

that is holomorphic on C+. Moreover, (fk(∞))∞k=1 converges to a limit ζ ∈ C. It follows
from Proposition 3.7 that (fk)

∞
k=1 converges uniformly on Σψ to f := ζ+g. Then (f ′

k)
∞
k=1

converges pointwise on C+ to g′ = f ′. Applying Fatou’s lemma to the sequences (‖f ′
k −

f ′
n‖Vs

)∞n=k for fixed k, one sees that ‖f ′
k − f ′‖Vs

→ 0. So f ′ ∈ Vs and f ∈ Ds. By (3.8),
f(∞) = ζ and so ‖fk−f‖Ds

→ 0, k →∞.

The argument used in the proof of Corollary 3.11 also provides the following corollary
of Fatou type (see also Lemma 4.11).

Corollary 3.12. Let s > −1 and (fk)
∞
k=1 ⊂ Ds be such that supk≥1 ‖fk‖Ds

< ∞ and

f(z) = limk→∞ fk(z) exists for all z ∈ C+. Then f ∈ Ds.
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Now employing (3.29), the estimates (3.7), (3.11) and (3.12) and Lemma 3.1, we obtain

the following estimates.

Corollary 3.13. Let ψ ∈ (0,π/2). For all f ∈ Ds, s >−1,

|f(z)| ≤max

(
1,

2s

π coss+1ψ

)
‖f‖Ds

, z ∈ Σψ,

and

|f ′(z)| ≤ (s+1)2s

π|z|coss+2ψ
‖f ′‖Vs

, z ∈ Σψ.

Moreover, f is continuous on Σψ ∪{0} and

lim
|z|→0,z∈Σψ

zf ′(z) = 0.

Remark 3.14. Corollary 3.13 implies that the point evaluation functionals δz, z ∈ C+,

are continuous on Ds, s >−1. Using (3.19) and the principle set out in Section 2, we see

that the function λ 
→ rγλ is holomorphic from C+ to Ds, for any s >−1, γ > 0.

3.3. More functions in Ds and their properties

In this section we give more examples of functions from Ds and note some additional
elementary properties that will be relevant for the sequel.

Proposition 3.15. For s > 0, B i
↪→Ds.

Proof. For s > 0 and f ∈ B we have

‖f‖Ds,0
= |f(∞)|+

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
|α+ iβ|s+1

dβ dα

≤ ‖f‖∞+2

∫ ∞

0

sup
β∈R

|f ′(α+ iβ)|
∫ ∞

0

dt

(t2+1)(s+1)/2
dα

≤max{1,B(1/2,s/2)}‖f‖B.

Thus, B is continuously included in Ds.

Remark 3.16. The representation (3.29) in Corollary 3.10 extends the reproducing

formula for B – that is, (3.29) for s= 1 – to a larger class of functions.

Recall that LM i
↪→B; see [7, Section 2.4], Thus, in view of Proposition 3.15, we have

LM i
↪→B i

↪→Ds, s > 0.

We will show in Corollary 5.2 that B is dense in Ds for every s > 0, and hence Ds is dense

in Dσ for all σ > s > 0. On the other hand, we will show in Corollary 5.2 that B is not
dense in D∞

s for s > 0.

For f ∈Hol(C+), let

f̃(z) := f(1/z), ft(z) := f(tz), t > 0, z ∈ C+.
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Lemma 3.17. Let s >−1 and t > 0. Then

(i) f ∈ Ds if and only if f̃ ∈ Ds and

‖f −f(∞)‖Ds
= ‖f̃ −f(0)‖Ds

.

(ii) If f is bounded away from 0 and f ∈ Ds, then 1/f ∈ Ds.

(iii) f ∈ Ds if and only if ft ∈ Ds, and ‖f‖Ds
= ‖ft‖Ds

.

Proof. Note that

‖f̃ ′‖Vs
=

∫ π/2

−π/2

cossϕ

∫ ∞

0

|f ′(ρ−1e−iϕ)|
ρ2

dρdφ

=

∫ π/2

−π/2

cossϕ

∫ ∞

0

|f ′(reiϕ)|drdϕ

= ‖f ′‖Vs
.

Moreover, by Corollary 3.10, f̃(∞) = f(0). This proves (i). The other statements are very

easy.

Remarks 3.18. 1. Neither of the spaces B and D0 is contained in the other. Indeed, the
function e−z ∈ LM⊂ B but e−z �∈ D0 (see Example 3.4). On the other hand, there are

bounded functions in D0 that are not in B; for example, the function exp(arccotz) ∈ D0

and is bounded but it is not in B (see Example 3.19).
More generally, for ν ≥ 0, let fν(z) = zνe−z, z ∈ C+. Then fν ∈ Ds if and only if s > ν

(see Example 3.4). Note that if ν > 0, fν is not bounded on any right half-plane. One can

show that if f ∈ Ds,0, then

|f(z)| ≤ 2s

π
‖f‖Ds,0

(
1+

4β2

α2

)(s+1)/2

, z = α+ iβ ∈ C+.

The function log(1+z)e−z is in Ds,s > 0, but is also unbounded on every right half-plane.

2. Because e−z ∈ Ds for s > 0, it follows from Lemma 3.17 that the functions e−t/z are

in Ds for all t > 0, s > 0. This shows that functions f ∈ Ds may not have full limits at
infinity or at zero. However, the properties (3.27) and (3.28) in Corollary 3.10 establish

values for f at infinity and at zero as sectorial limits.

3. The spaces Ds, s >−1, are invariant under shifts given by

(T (τ)f)(z) = f(z+ τ), f ∈ Ds, τ ∈ C+, z ∈ C+.

Indeed, these operators form a bounded C0-semigroup on Ds. See Section 11 for a proof.

On the other hand, Ds are not invariant under the vertical shifts when τ ∈ iR, as we see
in the following example.

Example 3.19. As stated in Example 3.5, the function arccot is in Ds for all s > −1.

Let

g(z) = exp(arccot(z)), z ∈ C+.
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Because |Rearccot(z)| ≤ π/2, ‖g‖∞ = exp(π/2) = g(∞). For s >−1, we have

‖g‖Ds
= |g(∞)|+‖g · (arccot)′‖Vs

≤ exp(π/2)(1+‖arccot‖Ds
).

Thus, g ∈ Ds for all s >−1.

However, the boundary function of g is not continuous at z = ±i. Indeed, for a fixed

ε > 0,

arccot(i+ iε) =
1

2i
log

(
1+

2

ε

)
;

hence,

g(i+ iε) = exp(−i log(1+2/ε)1/2)

does not have a limit as ε→ 0+.
Note that g(ε+ i) does not converge as ε→ 0+. This means that if f(z) := g(z− i), then

f does not have a sectorial limit at 0 and therefore does not belong to Ds for any s >−1.

Thus, Ds is not invariant under vertical shifts.

3.4. Bernstein functions and Ds

Recall that a holomorphic function g : C+ → C+ is a Bernstein function if it is of the
form

g(z) = a+ bz+

∫
(0,∞)

(1− e−zs)dμ(s), (3.30)

where a≥ 0, b≥ 0 and μ is a positive Borel measure on (0,∞) such that
∫
(0,∞)

s
1+s dμ(s)<

∞. The following properties of Bernstein functions g will be used (these properties differ

slightly from those used in [6]):

(B1) g maps Σψ into Σψ for each ψ ∈ [0,π/2]; see [50, Proposition 3.6] or [6, Proposition
2.1(1)].

(B2) g is increasing on (0,∞).

(B3) For all z ∈ C+,

g(Rez)≤ Reg(z)≤ |g(z)|, |g′(z)| ≤ g′(Rez).

Here the first inequality follows from taking the real parts in (3.30), and the second

inequality is shown in [7, Section 3.5, (B3)].

Further information on Bernstein functions can be found in [50].

Lemma 3.20. Let g be a Bernstein function, λ ∈ C+, and

f(z;λ) := (λ+g(z))−1, z ∈ C+.

Then f(·;λ) ∈ Ds for s > 2 and

‖f(·;λ)‖Ds,0
≤ 2s

(s−2)|λ| .
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Proof. We have

f ′(z;λ) =− g′(z)

(λ+g(z))2
,

and then, for ψ ∈ (−π/2,π/2), using Lemma 2.1, (B2) and (B3),∫ ∞

0

|f ′(ρeiψ;λ)|dρ=
∫ ∞

0

|g′(ρeiψ)|
|λ+g(ρeiψ)|2 dρ

≤ 1

cos2((|ψ|+π/2)/2)

∫ ∞

0

g′(ρcosψ)

(|λ|+ |g(ρeiψ)|)2 dρ

≤ 1

cos2((|ψ|+π/2)/2)

∫ ∞

0

g′(ρcosψ)

(|λ|+g(ρcosψ))2
dρ

≤ 1

cos2((|ψ|+π/2)/2)cosψ

∫ ∞

0

dt

(|λ|+ t)2

=
1

cos2((|ψ|+π/2)/2)cosψ
· 1

|λ| .

If s > 2, then

|λ|‖f(·;λ)‖Ds,0
= |λ|

∫ π/2

−π/2

cossψ

∫ ∞

0

|f ′(ρeiψ;λ)|dρdψ

≤ 2

∫ π/2

0

coss−1ψ

cos2((ψ+π/2)/2)
dψ = 4

∫ π/2

0

coss−1ψ

1− sinψ
dψ

≤ 16

∫ 1

0

(1− t2)s−3 dt=
8
√
πΓ(s−2)

Γ(s−3/2)
≤ 16s1/2

s−2
,

where the latter estimate follows from Wendel’s inequality for the Gamma function [56].

3.5. Algebras associated with Ds

The spaces Ds, s > −1, are not algebras, but there are some related algebras. Consider
the Banach spaces D∞

s :=Ds∩H∞(C+) equipped with the norm

‖f‖D∞
s

:= ‖f‖∞+‖f ′‖Vs
.

Thus, D∞
s is the space of bounded holomorphic functions on C+ such that

f(∞) := lim
|z|→∞,z∈Σψ

f(z)

exists for every ψ ∈ (0,π/2), and

‖f‖D∞
s

:= ‖f‖∞+

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
(α2+β2)(s+1)/2

dαdβ <∞.

Then (D∞
s ,‖ · ‖Ds

) is a Banach algebra and, in particular,

‖fg‖D∞
s

≤ ‖f‖D∞
s
‖g‖D∞

s
, f,g ∈ D∞

s . (3.31)

By Proposition 3.15, B i
↪→D∞

s for s > 0, and the embeddings are continuous.
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Example 3.19 shows that the function g(z) := exp(arccotz) is in D∞
s for all s > −1,

with ‖g‖D∞
s

= ‖g‖Ds
, and consequently D∞

s is not invariant under vertical shifts.

It follows from Lemma 3.17 that

f ∈ D∞
s if and only if f̃(z) := f(1/z) ∈ D∞

s ,

and

‖f‖D∞
s

= ‖f̃‖D∞
s
.

Moreover, the spectrum of f in D∞
s is the closure of the range of f. In particular, the

spectral radius of f is ‖f‖∞.
Now we consider the linear space

D∞ :=
⋃

s>−1

Ds.

We will show that D∞ is an algebra, which opens the way to an operator functional

calculus on D∞.

Lemma 3.21. For s,σ >−1, let f ∈ Ds and g ∈ Dσ. Then

h := fg ∈ Ds+σ+1,

and

‖h‖Ds+σ+1
≤
(
2+

2s+2σ

π

)
‖f‖Ds

‖g‖Dσ
. (3.32)

Hence, D∞ is an algebra.

Proof. By Corollary 3.13, for ρ > 0 and |ϕ|< π/2, we have

|f(ρeiϕ)| ≤
(
1+

2s

π coss+1ϕ

)
‖f‖Ds

,

|g(ρeiϕ)| ≤
(
1+

2σ

π cosσ+1ϕ

)
‖g‖Dσ

.

Hence,

‖h‖Ds+σ+1,0
=

∫ π/2

−π/2

coss+σ+1ϕ

∫ ∞

0

∣∣f ′(ρeiϕ)g(ρeiϕ)+f(ρeiϕ)g′(ρeiϕ)
∣∣ dρdϕ

≤
(
1+

2σ

π

)
‖f‖Ds,0

‖g‖Dσ
+

(
1+

2s

π

)
‖f‖Ds

‖g‖Dσ,0
.

This shows that h ∈ Dq, and (3.32) follows easily.

3.6. Derivatives of functions in Ds

This section further clarifies the behaviour of the derivatives of functions from Ds, and
Lemma 3.22 is of independent interest. Corollary 3.23 will be used in Subsection 10.3. For

m,n ∈ N, the notation zmf (n) denotes the function mapping z to zmf (n)(z). Moreover,

ft is the function mapping z to f(tz).
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Lemma 3.22. Let f ∈ Ds, s > −1. Then zf ′ ∈ Ds+1, and there exists C ′
s (independent

of f) such that

‖zf ′‖Ds+1
≤ C ′

s‖f‖Ds
(3.33)

and

‖ft−fτ‖Ds+1
≤ C ′

s‖f‖Ds

min{t,τ} |t− τ |, t,τ > 0. (3.34)

Proof. Note that

‖zf ′‖Ds+1
≤ ‖f ′‖Vs+1

+‖zf ′′‖Vs+1
≤ ‖f‖Ds

+‖zf ′′‖Vs+1
.

So, for (3.33), it suffices to consider ‖zf ′′‖Vs+1
. The argument is similar to Example 3.3

and the proof of Proposition 3.6. By Corollary 3.10, for fixed σ > s,

f ′′(z) =−cσ

∫ π/2

−π/2

cosσϕ

∫ ∞

0

ρσ+1f ′(ρeiϕ)

(z+ρe−iϕ)σ+3
dρdϕ, z ∈ C+,

where cσ = (σ + 1)(σ + 2) 2
σ

π . Then estimates similar to those in Example 3.3 and

Proposition 3.6 give

c−1
σ ‖zf ′′‖Vs+1

=

∫ π/2

−π/2

coss+1ψ

∫ ∞

0

r

∣∣∣∣∣
∫ π/2

−π/2

cosσϕ

∫ ∞

0

ρσ+1f ′(ρeiϕ)

(reiψ +ρe−iϕ)σ+3
dρdϕ

∣∣∣∣∣ drdψ
≤
∫ π/2

−π/2

cosσϕ

∫ π/2

−π/2

coss+1ψ

∫ ∞

0

∫ ∞

0

t|f ′(ρeiϕ)|dtdρ
(t2+2tcos(ϕ+ψ)+1)(σ+3)/2

dψdϕ

=

∫ π/2

−π/2

cosσϕGh,β,s+1(ϕ)

∫ ∞

0

|f ′(ρeiϕ)|dρdϕ,

where h(t) = t+ tσ, t ∈ (0,1), β = (σ+3)/2 and Gh,β,s+1(ϕ) is defined in (3.15), noting

that 2β− (s+1)−2 = σ−s. Now the estimate (3.33) follows from Lemma 3.2(b).

For (3.34), let g = fτ −ft. Without loss, assume that 0< t < τ . Then

g′(z) = τf ′(τz)− tf ′(tz) =

∫ τ

t

(f ′(rz)+ rzf ′′(rz)) dr =

∫ τ

t

d

dz
(zf ′(rz))dr.

Hence, by Fubini’s theorem,

‖g‖Ds+1
≤
∫
C+

∫ τ

t

(Rez)s+1

|z|s+2

∣∣∣∣ ddz (zf ′(rz))

∣∣∣∣ drdS(z)
=

∫ τ

t

‖zf ′‖Ds+1

r
dr ≤ C ′

s‖f‖Ds

t
(τ − t),

because the Ds+1-norm is invariant under the change of variable z 
→ rz
(Lemma 3.17(iii)).

The following corollary is easily proved by induction.
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Corollary 3.23. If f ∈ D∞ and n ∈ N, then znf (n) ∈ D∞.

Remark 3.24. Lemma 3.22 is sharp in the sense that for any s > 0 and σ ∈ (−1,s+1),
there exist functions f ∈Ds for which zf ′ /∈Dσ. For example, the function fν(z) := zνe−z

has these properties if max{0,σ−1}< ν < s. This follows directly from Example 3.4.

4. Hardy–Sobolev algebras on sectors

4.1. Hp-spaces on the right half-plane and their norms

In this section and in Subsection 4.2 we will study the Hardy spaces H1(Σψ) defined on

sectors Σψ, ψ ∈ (0,π). The properties of such spaces are similar to the properties of the
classical Hardy space H1(C+), though their theory seems to be more involved. The Hardy

spaces Hp(Σψ) have been studied, mostly for p > 1, but the results are scattered around

various places in the literature, which is often obscure, and some proofs contain rather
complicated, incomplete or vague arguments. We propose a streamlined (and probably

new) approach avoiding the use of Carleson measures or log-convexity, and we obtain a

new result (Corollary 4.3) on the way. The case p = 1 does not require any significant

adjustments, as we illustrate here. Standard references for the theory of Hardy spaces on
the right half-plane are [21] and [29].

We set out the situation when ψ = π/2 in this section and the case of general ψ in

Subsection 4.2. Although we are mainly interested in H1-spaces, we present statements
that are valid for Hp-spaces with p ∈ [1,∞), because the arguments are the same for all

such p.

Let 1≤ p <∞. The classical Hardy space Hp(C+) in the right half-plane C+ is defined
as

Hp(C+) =

{
g ∈Hol(C+) : ‖g‖p := sup

α>0

(∫ ∞

−∞
|g(α+ iβ)|p dβ

)1/p

<∞
}
.

It is well-known that ‖ · ‖p is a norm on Hp(C+) and (Hp(C+),‖ · ‖p) is a Banach space.

Moreover, for almost every t ∈ R there exists a sectorial limit g(it) := limz→it g(z) in C.

For every g ∈Hp(C+) one has limα→0 g(α+ i·) = g(i·) in Lp(R), and ‖g‖Hp(C+) := ‖g‖p =
‖g(i·)‖Lp(R).

One may also consider the normed space (Hp(Σπ/2),‖ · ‖Hp(Σπ/2)) as the space of all

g ∈Hol(C+) such that

‖g‖Hp(Σπ/2) := sup
|ϕ|<π/2

(∫ ∞

0

(
|g(teiϕ)|p+ |g(te−iϕ)|p

)
dt

)1/p

<∞

and (Hp
∗ (Σπ/2),‖ · ‖Hp

∗ (Σπ/2)) as{
g ∈Hol(C+) : ‖g‖Hp

∗ (Σπ/2) := sup
|ϕ|<π/2

(∫ ∞

0

|g(teiϕ)|p dt
)1/p

<∞
}
.

It is clear that Hp(Σπ/2) and Hp
∗ (Σπ/2) coincide as vector spaces, and

‖g‖Hp
∗ (Σπ/2) ≤ ‖g‖Hp(Σπ/2) ≤ 21/p‖g‖Hp

∗ (Σπ/2).
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Lemma 4.1. Let p ∈ [1,∞). Then Hp(Σπ/2)⊂Hp(C+) and

‖g‖p ≤ ‖g‖Hp(Σπ/2), g ∈Hp(Σπ/2). (4.1)

Proof. Fix p ∈ [1,∞). For fixed γ ∈ (1/2,1) define

gγ(z) := (γzγ−1)1/pg(zγ) ∈Hol(Σπ/(2γ)).

Note that ∫ ∞

0

|gγ(teiϕ)|p dt=
∫ ∞

0

|g(teiγϕ)|p dt, (4.2)

and ∫ π/2

−π/2

∫ ∞

0

|gγ(teiϕ)|p dtdϕ≤ π

2
‖g‖pHp(Σπ/2)

.

By Fubini’s theorem and Hölder’s inequality there exist sequences (t1,n)n≥1 and (t2,n)n≥1

such that 0< t1,n < t2,n, t1,n → 0, t2,n →∞ as n→∞ and

lim
n→∞

t1,n

∫ π/2

−π/2

|gγ(t1,neiϕ)|dϕ= 0, (4.3)

lim
n→∞

∫ π/2

−π/2

|gγ(t2,neiϕ)|dϕ= 0. (4.4)

Let Ωn := {z ∈ C+ : t1,n < |z|< t2,n}. By Cauchy’s formula,

gγ(z) =
α

πi

∫
∂Ωn

gγ(λ)

(λ− z)(λ+ z)
dλ, z = α+ iβ ∈ Ωn, (4.5)

for large n. Passing to the limit in (4.5) as n →∞ and using (4.2), (4.3) and (4.4), we

infer that gγ satisfies the Poisson formula

gγ(z) =
α

π

∫ ∞

−∞

gγ(it)

(t−β)2+α2
dt. (4.6)

Hence, by Young’s inequality and (4.2), for every α > 0,

‖gγ(α+ i·)‖Lp(R) ≤ ‖gγ(i·)‖Lp(R) ≤ ‖g‖Hp(Σπ/2).

Letting γ → 1, Fatou’s lemma implies (4.1).

Lemma 4.2. Let p ∈ [1,∞). Then Hp(C+)⊂Hp(Σπ/2) and

‖g‖Hp(Σπ/2) ≤ ‖g‖p, g ∈Hp(C+). (4.7)

Proof. First let p = 2 so that g ∈ H2(C+). Then, by [22, Ch.VIII, p.508], there exists

f ∈ L1(R,eπ|t| dt) such that f ≥ 0 on R, and for all |ϕ| ≤ π/2,∫ ∞

0

|g(teiϕ)|2 dt=
∫ ∞

−∞
e2ϕtf(t)dt.
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Hence, ∫ ∞

0

(
|g(teiϕ)|2+ |g(te−iϕ)|2

)
dt= 2

∫ ∞

−∞
cosh(2ϕt)f(t)dt

≤ 2

∫ ∞

−∞
cosh(πt)f(t)dt=

∫ ∞

0

(
|g(it)|2+ |g(−it)|2

)
dt,

and (4.7) holds for p= 2.
Let p ∈ [1,∞), p �= 2, be fixed and g ∈ Hp(C+). Then g(z) = B(z)g̃(z), z ∈ C+, where

B is the Blaschke product associated with g and g̃ has no zeros in C+. Then there is a

well-defined holomorphic function gp(z) = [g̃(z)]p/2 on C+ and gp ∈H2(C+). Using (4.7)
for p= 2, for all |ϕ|< π/2 we have∫ ∞

0

(
|g(teiϕ)|p+ |g(te−iϕ)|p

)
dt=

∫ ∞

0

(
|gp(teiϕ)|2+ |gp(te−iϕ)|2

)
dt (4.8)

≤
∫ ∞

−∞
|gp(it)|2 dt=

∫ ∞

−∞
|g(it)|p dt= ‖g‖pp,

and (4.7) follows.

Lemmas 4.1 and 4.2 imply the next statement.

Corollary 4.3. Let p ∈ [1,∞). Then Hp(Σπ/2) =Hp(C+), and for every g ∈Hp(C+),

‖g‖Hp(Σπ/2) = ‖g‖Hp(C+), (4.9)

and

‖g‖Hp
∗ (Σπ/2) ≤ ‖g‖Hp(C+) ≤ 21/p‖g‖Hp

∗ (Σπ/2). (4.10)

Note that the two-sided estimate (4.10) was proved in [52] and [42] in a more

complicated way (see also [1], [19], [45], [54], [55]). The coincidence of norms in (4.9)
seems not to have been noted before. It appears to be quite useful, as we will see in the

proof of Corollary 4.5.

Remark 4.4. The two-sided estimate (4.10) is sharp (and cannot be improved). Indeed,

let p ∈ [1,∞) and let

fk(z) :=
1

π1/p(z+1+ ik)2/p
, k ∈ N.

Then for all k, we have ‖fk‖Hp(C+) = 1 and, by direct estimates,(
‖fk‖Hp

∗ (Σπ/2)

)p

=

∫ ∞

0

|fk(te−iπ/2)|p dt

=
1

π

∫ ∞

0

dt

(t−k)2+1
dt=

1

2
+

arctank

π
.
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Thus,

‖f0‖Hp(C+) = 21/p‖f0‖Hp
∗ (Σπ/2) and lim

k→∞

‖fk‖Hp
∗ (Σπ/2)

‖fk‖Hp(C+)
= 1.

In fact, for all f ∈ Hp
∗(Σπ/2), the norm ‖f‖Hp

∗ (Σπ/2) is attained at the boundary

of Σπ/2.

Corollary 4.5. Let g ∈ Hp(Σπ/2), p ∈ [1,∞). Then there exist g(±it) := limϕ→±π/2

g(te±iϕ) for a.e. t ∈ R+, g(±i·) ∈ Lp(R+), and

lim
ϕ→±π/2

∫ ∞

0

|g(teiϕ)−g(±it)|p dt= 0. (4.11)

As a consequence, for every g ∈Hp(Σπ/2),

‖g‖Hp(Σπ/2) = ‖g(i·)‖Lp(R). (4.12)

Proof. Let p∈ [1,∞) be fixed. By Corollary 4.3, it suffices to prove (4.11) for g ∈Hp(C+).
If g ∈Hp(C+), then, as recalled above, for almost all t ∈ R there exists a sectorial limit

g(it) := limz→it g(z), and g(i·) ∈ Lp(R). Therefore, we also have limϕ→±π/2 g(te
±iϕ) =

g(±it) for almost all t. Using this and Fatou’s lemma, we infer from (4.8) that

limsup
ϕ→π/2

∫ ∞

0

(
|g(teiϕ)|p+ |g(te−iϕ)|p

)
dt≤

∫ ∞

−∞
|g(it)|p dt

≤ liminf
ϕ→π/2

∫ ∞

0

(
|g(teiϕ)|p+ |g(te−iϕ)|p

)
dt,

and hence

lim
ϕ→π/2

∫ ∞

0

(
|g(teiϕ)|p+ |g(te−iϕ)|p

)
dt=

∫ ∞

−∞
|g(it)|p dt. (4.13)

Then, by (4.13) and Lemma 2.2, using once again the pointwise a.e. convergence of

g(te±iϕ) to g(±it) as ϕ→±π/2, we obtain (4.11). Because ‖g‖Hp(C+) = ‖g(i·)‖Lp(R), we
get (4.12) as well.

For (formally) more general versions of (4.9) and (4.10), see (4.15) and (4.17).

4.2. The spaces H1(Σψ)

Now using the results of Subsection 4.1 for ψ= π/2, we develop basic properties ofH1(Σψ)
for any ψ ∈ (0,π). Define the Hardy space H1(Σψ) on the sector Σψ to be the space of

all functions f ∈Hol(Σψ) such that

‖f‖H1(Σψ) := sup
|ϕ|<ψ

∫ ∞

0

(
|f(teiϕ)|+ |f(te−iϕ)|

)
dt <∞. (4.14)

We will also consider a nonsymmetric version of H1(Σψ), defined as

H1
∗ (Σψ) :=

{
f ∈Hol(Σψ) : ‖f‖H1

∗(Σψ) := sup
|ϕ|<ψ

∫ ∞

0

|f(teiϕ)|dt <∞
}
.
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Theorem 4.6. Let ψ,ψ1,ψ2 ∈ (0,π).

(i) f ∈H1(Σψ) if and only if f ∈H1
∗ (Σψ), and then

2−1‖f‖H1(Σψ) ≤ ‖f‖H1
∗(Σψ) ≤ ‖f‖H1(Σψ). (4.15)

(ii) For any ψ1,ψ2 ∈ (0,π), the map

H1(Σψ1
)→H1(Σψ2

)

f(z) 
→ ψ1

ψ2
z(ψ1/ψ2)−1f(zψ1/ψ2)

is an isometric isomorphism of H1(Σψ1
) onto H1(Σψ2

) and of H1
∗ (Σψ1

) onto

H1
∗ (Σψ2

).

(iii) If f ∈ H1(Σψ), then the limits f(re±iψ) := limϕ→±ψ f(reiϕ) exist a.e. and in the

L1-sense with respect to r. Moreover,

f(z) =
1

2πi

∫
∂Σψ

f(λ)

λ− z
dλ, z ∈ Σψ. (4.16)

(iv) If f ∈H1(Σψ), then

‖f‖H1(Σψ) =

∫ ∞

0

(
|f(teiψ)|+ |f(te−iψ)|

)
dt. (4.17)

(v) H1(Σψ) and H1
∗ (Σψ) are Banach spaces.

Proof. The proof of (i) is clear, and (ii) is a direct verification. For ψ=π/2, the statements

(iii) and (iv), excluding (4.16), were proved in Corollaries 4.3 and 4.5, and (v) is well-

known. Then the general cases are reduced to the case when ψ = π/2, by means of (ii).
The Cauchy formula (4.16) is well-known for ψ = π/2 (see, for example, [21, Theorem

11.8]). For general ψ, we may argue similarly to the proof of Lemma 4.1, as follows.

Because f ∈H1(Σψ), ∫ ∞

0

∫ ψ

−ψ

|f(teiϕ)|dϕdt <∞.

Hence, there exist sequences (t1,n)n≥1 and (t2,n)n≥1 such that 0 < t1,n < t2,n, t1,n →
0, t2,n →∞ as n→∞ and

lim
n→∞

∫ ψ

−ψ

t1,n|f(t1,neiϕ)|dϕ= lim
n→∞

∫ ψ

−ψ

|f(t2,neiϕ)|dϕ= 0.

By applying Cauchy’s theorem around the boundary of{
z ∈ ∂Σψ−n−1 : t1,n < |z|< t2,n

}
for large n and taking the limit, we obtain (4.16).
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Remark 4.7. In addition to (4.17), it is possible to prove that

‖f‖H1
∗(Σψ) =max

(∫ ∞

0

|f(te−iψ)|dt,
∫ ∞

0

|f(teiψ)|dt
)
.

This requires additional techniques, and it is not used in this article.

4.3. Functions with derivatives in H1(Σψ)

For ψ ∈ (0,π), let us introduce the space

Hψ :=
{
f ∈Hol(Σψ) : f

′ ∈H1(Σψ)
}
.

In view of Corollary 4.3,

Hπ/2 =H1,1(C+) := {f ∈Hol(C+) : f
′ ∈H1(C+)}, (4.18)

and we may sometimes use the notation H1,1(C+) instead of Hπ/2.

Such function spaces are often called Hardy–Sobolev spaces, and we will also use this

terminology sporadically. Spaces more general than Hψ appear in [20]. Namely, for f ∈
Hol(Σψ) it was required in [20] that the boundary values of f exist and belong (after an
appropriate ‘rescaling’) to a Besov space Bs

∞,1, s > 0. One can develop a similar approach

to those spaces, but we do not see much advantage in such generality within the present

context.

Theorem 4.8. Let f ∈Hψ, ψ ∈ (0,π).

(i) The function f extends to a continuous bounded function on Σψ.

(ii) The limit

f(∞) := lim
|z|→∞,z∈Σψ

f(z)

exists.

(iii) One has

‖f‖H∞(Σψ) ≤ |f(∞)|+‖f ′‖H1(Σψ). (4.19)

In particular, the evaluation functionals δz, z ∈ Σψ, are continuous on Hψ.

Proof. Let ψ= π/2. Because Hπ/2 =H1,1(C+)⊂B by (4.18) and [7, Proposition 2.4], the
statement (i) follows from [7, Proposition 2.2(iv)], and (ii) follows from [7, Proposition

2.4]. In the general case, the map f(z) 
→ f(z2ψ/π) is an isomorphism ofHψ ontoH1,1(C+),

by Theorem 4.6(ii), so (i) and (ii) hold for Hψ. The statement (iii) is easily seen.

It follows from Theorem 4.8 that Hψ is an algebra for every ψ ∈ (0,π). We define a

norm on Hψ by

‖f‖Hψ
:= ‖f‖H∞(Σψ)+‖f ′‖H1(Σψ), f ∈Hψ. (4.20)
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This is easily seen to be an algebra norm. Theorem 4.8(iii) shows that

‖f‖′Hψ
:= |f(∞)|+‖f ′‖H1(Σψ) (4.21)

is an equivalent norm on H1(Σψ).
The following lemma is simple but crucial for our theory. The completeness of the norm

is a standard fact, the scale-invariance is trivial and the final isomorphism follows from

Theorem 4.6(ii).

Lemma 4.9. For every ψ ∈ (0,π), the space (Hψ,‖ ·‖Hψ
) is a Banach algebra. For t > 0,

the map f(z) 
→ f(tz) is an isometric algebra isomorphism on Hψ. Moreover, for any

ψ1,ψ2 ∈ (0,π), the map

Hψ1
→Hψ2

f(z) 
→ f(zψ1/ψ2)

is an isometric algebra isomorphism.

We now give some examples of functions in Hψ that will play important roles in
subsequent sections of this article. The first example is of similar type to Example 3.3.

Examples 4.10. Let ψ ∈ (0,π) and λ ∈ Σπ−ϕ,ϕ ∈ (ψ,π).

1. Let γ > 0, and consider the function rγλ(z) = (λ+ z)−γ, z ∈ Σψ. Then rγλ ∈Hψ and

‖rγλ‖Hψ
=

∫
∂Σψ

γ|dz|
|z+λ|γ+1

≤ 2

sinγ+1((ϕ−ψ)/2) |λ|γ
, (4.22)

where we have used Lemma 2.1. Thus, rγλ ∈Hψ, and there exists Cϕ,ψ,γ such that

‖rγλ‖′Hψ
≤ Cϕ,ψ,γ

|λ|γ , λ ∈ Σπ−ϕ. (4.23)

In particular, if γ = 1, then

‖rλ‖Hψ
≤ 2

sin2((ϕ−ψ)/2) |λ|
, λ ∈ Σπ−ϕ. (4.24)

This property will be important for the proof of Lemma 5.7 and hence of Theorem

5.10, and eventually of Theorem 1.2 (see Theorem 8.2). A more general estimate will
be given in Corollary 4.16.

2. Let γ ∈ (0,π/(2ψ)),λ ∈ Σπ/2−γψ, and eγ,λ(z) := e−λzγ

, z ∈ Σψ. Then eγ,λ ∈Hψ and

‖eγ,λ‖′Hψ
= ‖e1,λ‖′Hγψ

≤
∫
∂Σγψ

|λ|e−Reλz |dz| ≤
(

1

cos(ϕ+γψ)
+

1

cos(ϕ−γψ)

)
.

More examples can be found in Subsections 4.5 and 4.6. In particular, Lemma 4.13

shows that the restriction of any function in D∞ to Σψ, ψ ∈ (0,π/2), belongs to Hψ.
The following lemma is a result of Fatou type closely related to Corollary 3.12.

Lemma 4.11. Let ψ ∈ (0,π) and (fk)
∞
k=1 ⊂ Hψ be such that supk≥1 ‖fk‖Hψ

< ∞ and

f(z) := limk→∞ fk(z) exists for all z ∈ C+. Then f ∈Hψ.
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Proof. By Theorem 4.8, the functions {fk : k ≥ 1} are uniformly bounded on Σψ. By

Vitali’s theorem, f is holomorphic, and f ′
k(z) → f ′(z) as k → ∞ for each z ∈ Σψ. By

Fatou’s lemma, for |ϕ|< ψ,∫ ∞

0

|f ′(teiϕ)|dt≤ liminf
k→∞

∫ ∞

0

|f ′
k(te

iϕ)|dt≤ sup
k≥1

‖fk‖Hψ
.

Thus, f ∈Hψ.

4.4. The spaces H1,1(C+) and LL1

In [7, Proposition 2.4], we showed that Hπ/2
i
↪→ B. We will now show a stronger result

that H1,1(C+)
i
↪→LL1+C⊂ LM, where (LM,‖ · ‖HP)is the HP algebra as in Section 2.

In particular, it shows that the Laplace transforms of singular measures on (0,∞) are not
in H1,1(C+), which may be of interest.

Theorem 4.12. If f ∈H1,1(C+), then there exists g ∈L1(R+) such that f = f(∞)+Lg.
Moreover, there is an absolute constant C such that

‖f‖HP ≤ C‖f‖H1,1(C+). (4.25)

Proof. Let f ∈H1,1(C+) and, for n ∈ N, let

fn(z) := f(z)−f(z+n), z ∈ C+,

gn(t) :=− 2

π
t(1− e−nt)

∫ ∞

0

αe−αt

∫ ∞

−∞
f ′(α+ iβ)eiβt dβ dα, t > 0.

Then fn ∈H1,1(C+), and ‖fn‖H1,1(C+) ≤ 2‖f‖H1,1(C+). Moreover,

|gn(t)| ≤
2

π
t(1− e−nt)

∫ ∞

0

αe−αt

∫ ∞

−∞
|f ′(α+ iβ)|dβ dα

≤ 2

π
‖f ′‖H1(C+)t(1− e−nt)

∫ ∞

0

αe−αt dα=
2

π
‖f ′‖H1(C+)

(1− e−nt)

t

≤ 2n

π
‖f ′‖H1(C+).

By the reproducing formula for B (see Remark 3.16 or [7, Proposition 2.20]) and Fubini’s
theorem,

fn(z) =− 2

π

∫ ∞

0

α

∫ ∞

−∞
f ′(α+ iβ)

(
1

(z+α− iβ)2
− 1

(z+n+α− iβ)2

)
dβ dα

=− 2

π

∫ ∞

0

α

∫ ∞

−∞
f ′(α+ iβ)

(∫ ∞

0

e−(z+α−iβ)tt(1− e−nt)dt

)
dβ dα

=− 2

π

∫ ∞

0

e−ztgn(t)dt, z ∈ C+.

It follows that (π/2)f ′
n is the Laplace transform of tgn(t), and then tgn(t) is the

inverse Fourier transform of (π/2)f ′
n(i·) ∈ L1(R). By Hardy’s inequality in the form
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of [21, p.198],∫ ∞

0

|gn(t)|dt=
∫ ∞

0

|tgn(t)|
t

dt≤ π

4
‖f ′

n‖H1(C+) ≤
π

2
‖f ′‖H1(C+). (4.26)

Moreover,

f(z) = f(∞)+ lim
n→∞

fn(z), z ∈ C+,

and then by [49, Theorem 1.9.2] we infer that f = L(μ) for some μ ∈M(R+), and (4.25)

holds.

Now let

u(z) := f ′(z+1) =−
∫ ∞

0

e−zte−ttdμ(t), z ∈ C+.

Because f ∈H∞(C+) and f ′ ∈H1(C+), we have that u ∈H1(C+)∩H∞(C+)⊂H2(C+).
Hence, u= Lh for some h ∈ L2(R+), so

u(z) =

∫ ∞

0

e−zth(t)dt, z ∈ C+.

From the uniqueness properties of Laplace transforms it follows that

−e−ttμ(dt) = h(t)dt.

Thus, μ is absolutely continuous on (0,∞), with Radon–Nikodym derivative g. Because

μ is a bounded measure, g ∈ L1(R+), and

μ(dt) = f(∞)δ0+g(t)dt.

Hence, f = f(∞)+Lg.

4.5. The spaces Hψ and Ds

Because H1,1(C+) =Hπ/2 (by Corollary 4.3), we have shown in Theorem 4.12 that

Hπ/2
i
↪→LL1+C⊂ LM i

↪→B i
↪→Ds

if s > 0. In the next lemma, we show that, for all s >−1, Hπ/2
i
↪→Ds and Ds

r
↪→Hψ for

every ψ ∈ (0,π/2). Moreover, it follows that D∞
s

r
↪→Hψ.

Lemma 4.13. (i) If f ∈Hπ/2, then f ∈ D∞
s for every s >−1, and

‖f‖Ds,0
≤B

(
s+1

2
,
1

2

)
‖f ′‖H1(C+), (4.27)

‖f‖D∞
s

≤max

{
1,B

(
s+1

2
,
1

2

)}
‖f‖Hπ/2

.

(ii) If f ∈ Ds, s >−1, then f ∈Hψ for every ψ ∈ (0,π/2), and

‖f ′‖H1(Σψ) ≤
2s+1

π coss+2(ψ/2+π/4)
‖f‖Ds,0

. (4.28)
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Thus, for all ψ ∈ (0,π/2) and s >−1, there are natural continuous embeddings

Hπ/2
i
↪→Ds

r
↪→Hψ.

Note that the estimates (4.23) and (4.27) for functions rγλ reproduce the estimate (3.19),

with different constants.

Proof. Let s >−1 be fixed, and let f ∈Hπ/2. Using (4.15), we have

‖f‖Ds,0
=

∫ π/2

−π/2

cossϕ

∫ ∞

0

|f ′(teiϕ)|dtdϕ

≤
(∫ π/2

−π/2

cossϕdϕ

)
sup

|ϕ|≤π/2

∫ ∞

0

|f ′(teiϕ)|dt

=B

(
s+1

2
,
1

2

)
‖f ′‖H1(C+),

and (i) follows.

To prove (ii), note that if f ∈ Ds, then by Corollary 3.10,

f ′(z) =
(s+1)2s

π

∫ ∞

0

αs

∫ ∞

−∞

f ′(α+ iβ)

(z+α− iβ)s+2
dβ dα, z ∈ C+.

Hence, using (2.1), for every ψ ∈ (0,π/2), we obtain

2−s

∫ ∞

0

|f ′(te±iψ)|dt

≤ (s+1)

π

∫ ∞

0

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
|te±iψ +α− iβ|s+2

dβ dαdt

≤ s+1

π coss+2(ψ/2+π/4)

∫ ∞

0

αs

∫ ∞

−∞

(∫ ∞

0

|f ′(α+ iβ)|
(t+ |α+ iβ|)s+2

)
dtdβ dα

=
1

π coss+2(ψ/2+π/4)

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
|α+ iβ|s+1

dβ dα

=
1

π coss+2(ψ/2+π/4)
‖f ′‖Vs

,

and (4.28) follows.

For a function f ∈Hol(Σψ), γ > 0 and 0< ϕ≤min{π,ψ/γ}, define fγ ∈Hol(Σϕ) by

fγ(z) := f(zγ), z ∈ Σϕ.

Corollary 4.14. Let f ∈ Ds, s > −1, and let γ ∈ (0,1). Then fγ ∈ D∞
σ ∩Hπ/2 for all

σ > −1. Moreover, for each s > −1 and σ > −1, there exist constants Cs,σ,γ and C̃s,γ

such that

‖fγ‖D∞
σ

≤ Cs,σ,γ‖f‖Ds
and ‖fγ‖Hπ/2

≤ C̃s,γ‖f‖Ds
, f ∈ Ds.
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Proof. Using Lemma 4.13, (i) and (ii), and Lemma 4.9, we see firstly that f ∈Hπγ/2, and

then fγ ∈Hπ/2 ⊂D∞
σ . Moreover, each of the embeddings from Lemma 4.13 is continuous,

and the map f 
→ fγ is isometric from Hπγ/2 to Hπ/2.

Now we relate the spaces Hψ and Ds to another class of spaces used in the literature

on functional calculi. For ψ ∈ (0,π), let

Eψ :=

{
f ∈Hol(Σψ) : ‖f‖ψ := sup

ϕ∈(0,ψ)

∫
∂Σϕ

|f(z)|
|z| |dz|<∞

}
. (4.29)

It is easy to see that (Eψ,‖ · ‖ψ) is a Banach space and that

Eψ = {f ∈Hol(Σψ) : f(z)/z ∈H1(Σψ)}.

Proposition 4.15. Let f ∈ Eψ and let g(z) := f(z)/z. Then, for every ϕ ∈ (0,ψ),

‖f ′‖H1(Σϕ) ≤
1

2π

(
π−ψ−ϕ

sin(ψ+ϕ)
+

π−ψ+ϕ

sin(ψ−ϕ)

)
‖g‖H1(Σψ), (4.30)

where we set 0
sin0 := 1. Thus, Eψ

r
↪→Hϕ, ϕ ∈ (0,ψ), and Eπ/2

i
↪→Ds, s > 0.

Proof. By Cauchy’s theorem, for every z ∈ Σψ,

f ′(z) =
1

2πi

∫
∂Σψ

λg(λ)dλ

(z−λ)2
.

Hence, for every ϕ ∈ (0,ψ), by Fubini’s theorem,∫ ∞

0

(
|f ′(ρeiϕ)|+ |f ′(ρe−iϕ)|

)
dρ≤ 1

2π

∫
∂Σψ

|g(λ)|J(λ,ϕ) |dλ|,

where

J(λ,ϕ) :=

∫ ∞

0

(
|λ|

|ρeiϕ−λ|2 +
|λ|

|ρe−iϕ−λ|2
)

dρ

=

∫ ∞

0

dρ

ρ2−2ρcos(ψ+ϕ)+1
+

∫ ∞

0

dρ

ρ2−2ρcos(ψ−ϕ)+1

=
π−ψ−ϕ

sin(ψ+ϕ)
+

π−ψ+ϕ

sin(ψ−ϕ)
,

in view of [48, item 2.2.9, (25)]. Hence, f ∈Hϕ and (4.30) follows. Thus, Eψ
r
↪→Hϕ for all

ϕ∈ (0,ψ). Recalling Lemma 4.13 and that Hπ/2 =H1,1(C+), we have proved the inclusion

Eπ/2
i
↪→Ds, s > 0, as well.

Note that the inclusions in Proposition 4.15 are strict. Indeed, if f(z) = z(z+1)−1, then

one has f ∈Hψ for every ψ ∈ (0,π) but f /∈ Eψ for any ψ ∈ (0,π). Moreover, if

f(z) =
z e−z

(z+1)log2(z+2)
,

then z−1f ∈H1(C+), and f ∈ D0, but f �∈ Ds for any s ∈ (−1,0).
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The spaces Eψ are studied in [38, Chapter 10]; see also [38, Appendix H2], [34, Section

6] and [33, Appendix C]. To ensure the algebra property and to relate the spaces to

the H∞-calculus, the authors considered the algebras H∞(Σψ)∩Eψ. Lemma 4.15 shows
that the spaces Eψ are fully covered within the framework of the algebras D∞ and Hψ.

These algebras will be associated to the more powerful functional calculi constructed in

Corollary 7.8 and Theorem 8.2.

4.6. Bernstein functions and Hψ

To illustrate the relevance of the Hardy–Sobolev spaces, we show that the ‘resolvent’ of

a Bernstein function belongs to an appropriate Hardy–Sobolev space. This observation

will be used in Section 10 to provide a new proof of the permanence of subordination for
holomorphic semigroups, one of the main results of [31]; see also [6] and [7].

Let g be a Bernstein function, ψ ∈ (0,π/2), and λ ∈ Σπ−ψ. Let

f(z,λ) := (λ+g(z))−1, z ∈ Σψ.

If λ ∈ C+, it follows from Lemmas 3.20 and 4.13 that f(·,λ) ∈ Hψ and ‖f(·,λ)‖Hψ
≤

Cψ/|λ|, where Cψ is independent of g and λ ∈ C+. In order to obtain the correct angle,

we will need to extend this to λ ∈ Σπ−ϕ, where ϕ ∈ (ψ,π).

Corollary 4.16. Let g be a Bernstein function, ψ ∈ (0,π/2), ϕ ∈ (ψ,π) and λ ∈ Σπ−ϕ.

Then

‖f(·,λ)‖Hψ
≤ 2

(
1

sin(min(ϕ,π/2))
+

2

cosψ sin2((ϕ−ψ)/2)

)
1

|λ| . (4.31)

Proof. For fixed ψ ∈ (0,π/2), ϕ ∈ (ψ,π) and λ ∈ Σπ−ϕ, observe that

‖f ′(·,λ)‖H1(Σψ) =

∫ ∞

0

(
|g′(teiψ)|

|λ+g(teiψ)|2 +
|g′(te−iψ)|

|λ+g(te−iψ)|2
)
dt.

Using the property (B1) for Bernstein functions and (2.1), we have

|λ+g(te±iψ)| ≥ sin((ϕ−ψ)/2)(|λ|+ |g(te±iψ)|), t≥ 0.

Moreover, in view of (B3), for all t≥ 0,

|g(te±iψ)| ≥ Reg(te±iψ)≥ g(tcosψ) and |g′(e±iψt)| ≤ g′(tcosψ).

Using (B2), we have

‖f ′(·,λ)‖H1(Σψ) ≤
2

sin2((ϕ−ψ)/2)

∫ ∞

0

g′(tcosψ)

(|λ|+g(tcosψ))2
dt

≤ 2

cosψ sin2((ϕ−ψ)/2)

∫ ∞

0

ds

(|λ|+s)2

=
2

cosψ sin2((ϕ−ψ)/2)

1

|λ| .
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Thus, f(·,λ) ∈ Hψ and f(∞,λ) = (λ + g(∞))−1. Because |argλ| < π − ϕ and

g(∞) ∈ [0,∞],

|f(∞,λ)| ≤ 1

sin(min(ϕ,π/2))|λ| . (4.32)

Now (4.31) follows from Theorem 4.8(ii).

4.7. Representations for functions in Hψ

In this section we derive a reproducing formula for functions from Hψ and obtain certain

alternative representations for its kernel.

Proposition 4.17. Let f ∈Hψ, ψ ∈ (0,π). Let γ = 2ψ
π and

fγ(z) := f(zγ), z ∈ C+. (4.33)

Then

f(z) = f(∞)− 1

π

∫ ∞

0

∫ ∞

−∞

f ′
γ(α+ iβ)

z1/γ +α− iβ
dβ dα, z ∈ Σψ ∪{0}. (4.34)

Proof. Because f ∈ Hψ, Lemma 4.9 implies that f ′
γ ∈H1(C+). Hence, by Lemma 4.13

and Theorem 4.8, we have fγ ∈ D0∩C(C+). Then, in view of Corollary 3.10,

fγ(z) = fγ(∞)− 1

π

∫ ∞

0

∫ ∞

−∞

f ′
γ(α+ iβ)

z+α− iβ
dβ dα, z ∈ C+∪{0},

and (4.34) follows.

Corollary 4.18. Let f ∈ D∞, and γ ∈ (0,1). If fγ is given by (4.33), then

f(z) = f(∞)− 1

π

∫ ∞

0

∫ ∞

−∞

f ′
γ(α+ iβ)

z1/γ +α− iβ
dβ dα, z ∈ Σπγ/2∪{0}. (4.35)

Proof. By Lemma 4.13, f ∈Hπγ/2, so (4.35) follows from (4.34).

The next reproducing formula for functions in Hψ resembles [12, Lemma 7.4], and it

was, in fact, inspired by [12, Lemma 7.4]. In particular, this formula replaces the double

(area) integral in (4.34) with a line integral, it involves boundary values of f ′ rather than
scalings of f ′ (such as in (4.34)), and it offers a different kernel that might sometimes be

easier to deal with. The arccot function has been defined in (3.22).

Proposition 4.19. Let f ∈Hψ, ψ ∈ (0,π). Let ν = π/(2ψ), and

fψ(t) :=
f(eiψt)+f(e−iψt)

2
, t > 0. (4.36)

Then

f(z) = f(∞)− 2

π

∫ ∞

0

f ′
ψ(t)arccot(z

ν/tν)dt, z ∈ Σψ ∪{0}. (4.37)

https://doi.org/10.1017/S1474748021000414 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000414


1422 C. Batty, A. Gomilko, and Y. Tomilov

Proof. Because arccotλ ∈ D0 (see Example 3.5), (3.29) shows that

arccot(λ) =
1

π

∫ ∞

0

∫ ∞

−∞

(λ+u− iv)−1

(u+ iv)2+1
dvdu, λ ∈ C+. (4.38)

Let γ = 1/ν and fγ be given by (4.33). By Proposition 4.17, for z ∈ Σψ ∪{0},

f(z)−f(∞) =− 1

π

∫ ∞

0

∫ ∞

−∞

f ′
γ(α+ iβ)

zν +α− iβ
dβ dα. (4.39)

It follows from Lemma 4.9 that f ′
γ ∈ H1(Σπ/2) = H1(C+), so by Cauchy’s formula for

functions in H1(C+) [21, Theorem 11.8], we have, for λ ∈ C+,

f ′
γ(λ) =

1

2π

∫ ∞

−∞

f ′
γ(it)

λ− it
dt− 1

2π

∫ ∞

−∞

f ′
γ(it)

λ+ it
dt

=
i

π

∫ ∞

−∞

tf ′
γ(it)

λ2+ t2
dt

=
iγ

π

∫ ∞

0

eiπ(γ−1)/2f ′(eiπγ/2tγ)tγ − e−iπ(γ−1)/2f ′(e−iπγ/2tγ)tγ

λ2+ t2
dt

=
γ

π

∫ ∞

0

(
eiψf ′(eiψtγ)+ e−iψf ′(e−iψtγ)

) tγ

λ2+ t2
dt

=
2

π

∫ ∞

0

f ′
ψ(s)s

ν

λ2+s2ν
ds.

Therefore, by (4.39) and (4.38), we obtain

f(z)−f(∞)

=− 2

π2

∫ ∞

0

f ′
ψ(s)

(∫ ∞

0

∫ ∞

−∞

sν dβ dα

(zν +α− iβ)((α+ iβ)2+s2ν)

)
ds

=− 2

π2

∫ ∞

0

f ′
ψ(s)

(∫ ∞

0

∫ ∞

−∞

dβ dα

((z/s)ν +α− iβ)((α+ iβ)2+1)

)
ds

=− 2

π

∫ ∞

0

f ′
ψ(s)arccot(z

ν/sν)ds,

so (4.37) holds for z ∈ Σψ ∪{0}.

Proposition 4.19 motivates a more careful study of the kernel arccot(zν). The integral
representation of this kernel will be crucial in deriving fine estimates for the H-calculus

for operators in Subsection 8.2.

Lemma 4.20. Let ψ ∈ (0,π) and ν = π/(2ψ). Then

arccot(zν) =
1

2π

∫ ∞

0

Vψ(z,t) log

∣∣∣∣1+ tν

1− tν

∣∣∣∣ dtt +
1

4i

∫
Γψ

dλ

λ− z
, z ∈ Σψ, (4.40)
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where

Vψ(z,t) :=− t

2

(
e−iψ

z− te−iψ
+

eiψ

z− teiψ

)
, (4.41)

Γψ := {λ : |λ|= 1, argλ ∈ (ψ,2π−ψ)}.

Proof. We have

arccot(zν) =
1

2i
log

∣∣∣∣zν + i

zν − i

∣∣∣∣+ 1

2
arg

(
zν + i

zν − i

)
, z ∈ Σψ.

Because νψ = π/2, for every t > 0, t �= 1,

lim
z∈Σψ, z→teiψ

arccot(zν) =
1

2i
log

∣∣∣∣1+ tν

1− tν

∣∣∣∣+ 1

2
arg

(
tν +1

tν −1

)
,

and

lim
z∈Σψ, z→te−iψ

arccot(zν) =− 1

2i
log

∣∣∣∣1+ tν

1− tν

∣∣∣∣+ 1

2
arg

(
tν −1

tν +1

)
.

Here,

arg

(
tν +1

tν −1

)
= arg

(
tν −1

tν +1

)
= πχ(0,1)(t), t > 0, t �= 1,

where χ[0,1] is the characteristic function of (0,1). So,

lim
z∈Σψ, z→te±iψ

arccot(zν) =∓ i

2
log

∣∣∣∣1+ tν

1− tν

∣∣∣∣+ π

2
χ[0,1](t). (4.42)

Now fix z ∈ Σψ. Using limsup|λ|→∞, λ∈C+
|λarccotλ| < ∞, it follows from Cauchy’s

theorem that

arccot(zν) =
1

2πi

∫
∂Σψ

arccot(λν)

λ− z
dλ,

∫
λ∈∂Σψ,|λ|<1

dλ

λ− z
=

∫
Γψ

dλ

λ− z
.

Thus, by (4.42),

arccot(zν) =
1

4π

∫ ∞

0

log

∣∣∣∣1+ tν

1− tν

∣∣∣∣( 1

t− eiψz
+

1

t− e−iψz

)
dt+

1

4i

∫
Γψ

dλ

λ− z

=
1

2π

∫ ∞

0

Vψ(z,t) log

∣∣∣∣1+ tν

1− tν

∣∣∣∣ dtt +
1

4i

∫
Γψ

dλ

λ− z
.

Remark 4.21. Letting z → 0 in (4.40), we obtain

π

2
=

1

2π

∫ ∞

0

log

∣∣∣∣1+ tν

1− tν

∣∣∣∣ dtt +
π−ψ

2
;

hence,

1

2π

∫ ∞

0

log

∣∣∣∣1+ tν

1− tν

∣∣∣∣ dtt =
ψ

2
. (4.43)
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5. Dense sets in Ds and Hψ

In this section we establish some results concerning density and approximations in our
spaces.

5.1. Dense subsets of Ds and some applications

Let R(C+) be the linear span of {rλ : λ ∈C+} and R̃(C+) be the sum of R(C+) and the

constant functions. Using Example 4.10(1) and Lemma 4.13, we have

R̃(C+)⊂Hπ/2
i
↪→Ds, s >−1. (5.1)

Theorem 5.1. The space

R̃(C+) :=

{
a0+

n∑
k=1

ak(λk+ z)−1 : n ∈ N, ak ∈ C, λk ∈ C+

}
is dense in Ds for each s >−1.

Proof. Let RDs
(C+) be the closure of R(C+) in Ds. First let s ∈ (−1,0) and f ∈ Ds. It

follows from Example 3.3 and Remark 3.14 (or a direct estimate) that the function

(Rf )(λ) :=− 1

π
f ′(λ)rλ

is continuous from C+ to Ds, and it is Bochner integrable with respect to area measure

S on C+. Because point evaluations are continuous on Ds (Remark 3.14), it follows from
Corollaries 3.8 and 3.10 that

Q0f
′ =

∫
C+

Rf (λ)dS(λ)

as the Bochner integral of a continuous function. Hence, Q0f
′ belongs to the closure in

Ds of the linear span of the range of the integrand, which is contained in RDs
(C+). Now

f = f(∞)+Q0f
′, which is in the closure of R̃(C+) in Ds.

If now f ∈Ds,s≥ 0, then by an argument similar to the above f−f(∞) belongs to the
closed linear span of {rs+2

λ
: λ ∈C+} in Ds. If λ ∈C+ and σ ∈ (−1,0), then rs+2

λ
∈Dσ, so

that rs+2

λ
∈RDσ

. Since Dσ ⊂Ds, we have rs+2

λ
∈RDs

, and thus f −f(∞) ∈RDs
.

From Proposition 3.6, we have the continuous inclusion

Ds
i
↪→Dσ if σ > s >−1,

and from (5.1), Theorem 4.12 and Proposition 3.15, we have

R̃(C+)⊂H1,1(C+)
i
↪→LL1+C⊂ LM i

↪→B i
↪→D∞

s

i
↪→Ds if s > 0.

Here LL1+C is the sum of LL1 and the constant functions, and it is a closed subspace

of LM. The following density results hold.

Corollary 5.2. 1. If σ > s >−1, then Ds is dense in Dσ.

2. For s >−1, the spaces H1,1(C+) and D∞
s are dense in Ds.
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3. For s > 0, the spaces LL1+C, LM and B are dense in Ds.

4. For s > 0, the spaces R̃(C+), H1,1(C+), LL1 + C, LM and B are not dense
in D∞

s .

Proof. The first three statements are immediate from Theorem 5.1.

Because any function in B extends continuously to iR, the same holds for the closure
of B in D∞

s when s > 0. The function f(z) = e−1/z ∈ D∞
s for s > 0 (see Remarks 3.18

and Example 3.4 with ν = 0), but f is not continuous at z = 0. This establishes the final

statement.

The function g(z) = exp(arccotz) considered in Example 3.19 provides another example
of a function from D∞

0 that is discontinuous on iR and so does not belong to the closure

of B in D∞
s for s > 0.

In order to obtain operator norm estimates for functions f (n) applied to semigroup
generators (see Theorem 10.3), we will need a stronger version of Corollary 3.23 on

differentiability of t → f(t·) in the Ds-norm. We first prove a lemma, and we present

the stronger statement in Corollary 5.5.

Lemma 5.3. Let λ ∈ C+, τ > 0, t ∈ (τ/2,2τ), and define

gt,τ,λ(z) :=
rλ(tz)− rλ(τz)

t− τ
− zr′λ(τz), z ∈ C+.

Then, for every s >−1,

lim
t→τ

‖gt,τ,λ‖Ds
= 0. (5.2)

Proof. We have

g′t,τ,λ(z) =

(
− t

(tz+λ)2
+

τ

(τz+λ)2

)
1

t− τ
+

1

(τz+λ)2
− 2τz

(τz+λ)3

=
τtz2−λ2

(tz+λ)2(τz+λ)2
+

λ− τz

(τz+λ)3
→ 0, t→ τ.

Hence,

|g′t,τ,λ(z)| ≤
Cτ,λ

1+ |z|2 , t ∈ (τ/2,2τ), z ∈ C+,

for some Cτ,λ. Because ∫ π/2

−π/2

cossψ

∫ ∞

0

dρ

1+ρ2
dψ <∞

for any s >−1, the dominated convergence theorem implies (5.2).

Corollary 5.4. Let f ∈Ds, s >−1. For τ > 0, let zf ′
τ denote the function mapping z to

zf ′(τz). Then

lim
t→τ

∥∥∥∥ft−fτ
t− τ

− zf ′
τ

∥∥∥∥
Ds+1

= 0.
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Proof. Let τ > 0 be fixed, and

(Rt,τf)(z) :=
f(tz)−f(τz)

t− τ
− zf ′

τ , f ∈ Ds, t > τ/2.

By Lemma 3.22, {Rt,τ : t > τ/2} is a bounded subset of L(Ds,Ds+1). By Lemma 5.3,

lim
t→τ

‖Rt,τrλ‖Ds+1
= 0, λ ∈ C+.

Because the linear span of the functions rλ and the constants is dense in Ds (see Theorem
5.1), the assertion follows.

Corollary 5.5. Let f ∈ Ds, s >−1, and let

G(t)(z) := f(tz), Fn(t)(z) := znf (n)(tz), n ∈ N, t > 0, z ∈ C+.

Then G and Fn map (0,∞) into Ds+n, G is n-times differentiable as a function from
(0,∞) to Ds+n and

Fn =G(n).

Proof. Firstly, f(tz) ∈ Ds ⊂Ds+n, so G maps (0,∞) into Ds+n.
The proof is by induction on n. The case n= 1 is given by Corollary 5.4. Assume that

G(n) = Fn with values in Ds+n, and let fn(z) = znf (n)(z). Then

G(n)(t)(z) = Fn(t)(z) = t−nfn(tz).

By Corollary 5.4 applied to fn ∈ Ds+n, G
(n) is differentiable with respect to t, when

considered as a function with values in Ds+n+1. Finally,

G(n+1)(t)(z) =
d

dt
(znf (n)(tz)) = zn+1f (n+1)(tz) = Fn+1(t)(z).

5.2. Approximations via change of variables

Here we consider approximations of f from Ds and Hψ by the functions fγ(z) = f(zγ) as

γ → 1−.

Proposition 5.6. Let γ ∈ (0,1). The following hold:

1. Let s >−1 and f ∈ Ds. Then

‖fγ‖Ds
≤ ‖f‖Ds

, (5.3)

and

lim
γ→1−

‖fγ −f‖Ds
= 0. (5.4)

2. Let ψ ∈ (0,π)and g ∈Hψ. Then

lim
γ→1−

‖gγ −g‖Hψ
= 0. (5.5)
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Proof. 1. First let g ∈H1,1(C+). If 0<ψ <ϕ≤ π/2, then it follows from Theorem 4.6(iv)

that ∫ ∞

0

(
|g′(teiϕ)|+ |g′(te−iϕ)|

)
dt≥

∫ ∞

0

(
|g′(teiψ)|+ |g′(te−iψ)|

)
dt. (5.6)

Hence,

‖g‖Ds
= |g(∞)|+

∫ π/2

0

cossϕ

∫ ∞

0

(
|g′(teiϕ)|+ |g(te−iϕ)|

)
dtdϕ

≥ |g(∞)|+
∫ π/2

0

cossϕ

∫ ∞

0

(
|g′(teiγϕ)|+ |g′(te−iγϕ)|

)
dtdϕ

= ‖gγ‖Ds
.

Because Hπ/2 is dense in Ds (see Corollary 5.2), it follows that the map g 
→ gγ extends

to a contraction on Ds, and this contraction maps f to fγ . Then (5.3) holds.

Now (5.4) follows from (5.5), (5.3) and the fact that Hπ/2 is continuously and densely

embedded in Ds (see Proposition 4.13 and Corollary 5.2).
2. Because the norms ‖ · ‖Hψ

and ‖ · ‖′Hψ
are equivalent and gγ(∞) = g(∞), it suffices

to show that

‖g′γ −g′‖H1(Σψ) =

∫
∂Σψ

|g′γ(z)−g′(z)| |dz| → 0.

By Lemma 4.9, we have ∫
∂Σψ

|g′γ(z)| |dz|=
∫
∂Σγψ

|g′(z)| |dz|.

Applying Theorem 4.6(iii) to g′,

lim
γ→1−

∫
∂Σγψ

|g′(z)| |dz|=
∫
∂Σψ

|g′(z)| |dz|

and

lim
γ→1−

g′γ(z) = g′(z), for almost all z ∈ ∂Σψ.

Now the statement (5.5) follows from Lemma 2.2.

5.3. Density of rational functions in Hψ

In Theorem 5.1 and Corollary 5.2, we established that R̃(C+) and several larger spaces

are dense in Ds, for s > −1 or s > 0. In particular, we noted that H1,1(C+) is dense
in Ds.

Let ψ ∈ (0,π) and

Hψ,0 = {f ∈Hψ : f(∞) = 0},

with the norm

‖f‖Hψ,0
= ‖f ′‖H1(Σψ).

By (4.19), this norm is equivalent to ‖ · ‖Hψ
on Hψ,0.
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Let ψ ∈ (0,π) and R(Σψ) be the linear span of {rλ : λ ∈ Σπ−ψ}. Let RH(Σψ) be the

closure ofR(Σψ) inHψ,0. We will prove thatHψ,0 =RH(Σψ). Thus, the rational functions

that vanish at infinity and have simple poles outside Σψ are dense inHψ modulo constants.
This fact may be known, but we did not find it in the literature. Our proof involves several

lemmas given later and it may be of interest as a piece of function theory. The following

lemma, relating to the function spaces Eϕ from Definition (4.29), is the key step in our
proof.

Lemma 5.7. Let ψ ∈ (0,π), ϕ ∈ (ψ,π) and let f ∈H1(Σϕ). If∫
∂Σϕ

|f(λ)|
|λ| |dλ|<∞,

then

f ∈RH(Σψ). (5.7)

Proof. From (4.22) for γ = 1, the function F (λ) := rλ maps Σπ−ψ into Hψ,0 and is

locally bounded. Moreover, F is holomorphic (see Theorem 4.8(iii) and Section 2) and its

derivative is −r2λ.
The Cauchy integral formula (4.16) may be written as

f(z) =
1

2πi

∫
∂Σϕ

f(λ)F (−λ)(z)dλ, z ∈ Σψ.

From (4.24), we obtain∫
∂Σϕ

‖f(λ)F (−λ)‖Hψ,0
|dλ| ≤ 1

2π sin2((ϕ−ψ)/2)

∫
∂Σϕ

|f(λ)|
|λ| dλ <∞.

Thus,

f =
1

2πi

∫
∂Σϕ

f(λ)F (−λ)dλ

as a Bochner integral in Hψ,0, with continuous integrand, so it may be approximated
in the Hψ,0-norm by Riemann sums of the integrand, which lie in R(Σψ). Hence, f ∈
RH(Σψ).

The next step in the proof is to construct a family of functions that serve as an

approximate identity for Hϕ,0 when restricted to any sector smaller than Σϕ.

Lemma 5.8. Let ϕ ∈ (0,π) and ε ∈ (0,1), and let

gε(z) :=
2zε

1+ zε
(1+ εz)−2, z ∈ C\ (−∞,0]. (5.8)

Then gε ∈Hϕ,0∩H1(Σϕ) and

sup
ε∈(0,1)

‖g′ε‖H1(Σϕ) <∞. (5.9)
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Moreover,

lim
ε→0

gε(z) = 1, z ∈ C\ (−∞,0], (5.10)

and, for 0< a < b <∞, there exists Cϕ,a,b such that

|g′ε(z)| ≤ Cϕ,a,b · ε, z ∈ ∂Σϕ, |z| ∈ (a,b). (5.11)

Proof. It is clear that gε ∈H1(Σϕ) and gε(∞) = 0. Moreover,

g′ε(z) =
2εzε

z(1+ zε)2(1+ εz)2
− 4εzε

(1+ zε)(1+ εz)3
.

Applying Lemma 2.1, there is a constant Cϕ such that, for z ∈ ∂Σϕ and t= |z|,

|g′ε(z)| ≤ Cϕεt
ε

(
2

t(1+ tε)2(1+ εt)2
+

4

(1+ tε)(1+ εt)3

)
. (5.12)

Hence,

‖g′ε‖H1(Σϕ) ≤ 2εCϕ

∫ ∞

0

tε dt

t(1+ tε)2(1+ εt)2
+4εCϕ

∫ ∞

0

tε dt

(1+ tε)(1+ εt)3

≤ 2εCϕ

∫ ∞

1

dt

(1+ εt)2
+2εCϕ

∫ 1

0

tε−1 dt+4εCϕ

∫ ∞

0

dt

(1+ εt)3

≤ 6Cϕ.

This yields (5.9).

The property (5.10) is straightforward, and (5.11) follows from (5.12).

Lemmas 5.7 and 5.8 enable us to show that any function f ∈ Hϕ,0, when restricted to
Σψ, ψ ∈ (0,ϕ), can be approximated by rational functions (with simple poles) in Hψ,0.

Lemma 5.9. Let ψ ∈ (0,π), ϕ ∈ (ψ,π), and let f ∈Hϕ,0. Then

f ∈RH(Σψ). (5.13)

Proof. Assume first that f ∈ Hϕ,0 and f(0) = 0, and let gε be defined by (5.8). Then

fgε ∈Hϕ,0∩H1(Σϕ), and ∫
∂Σϕ

|f(z)gε(z)|
|z| |dz|<∞.

By Lemma 5.7, fgε ∈RH(Σψ).

Note that

‖f(1−gε)‖Hϕ,0
≤ ‖f ′(1−gε)‖H1(Σϕ)+‖fg′ε‖H1(Σϕ).

We will prove that

lim
ε→0

‖f ′(1−gε)‖H1(Σϕ) = 0 (5.14)

and

lim
ε→0

‖fg′ε‖H1(Σϕ) = 0. (5.15)
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By (4.19) and (5.9),

sup
ε∈(0,1)

‖gε‖H∞(Σϕ) ≤ sup
ε∈(0,1)

‖g′ε‖H1(Σϕ) <∞,

so, using (5.10) and the dominated convergence theorem, we have

‖f ′(1−gε)‖H1(Σϕ) =

∫
∂Σϕ

|f ′(λ)(1−gε(λ))| |dλ| → 0, ε→ 0.

For 0< a < b <∞,

‖fg′ε‖H1(Σϕ) =

∫
∂Σϕ

|f(λ)||g′ε(λ)| |dλ|

≤ sup
|z|>b, z∈∂Σϕ

|f(z)|
∫
|λ|>b, λ∈∂Σϕ

|g′ε(λ)| |dλ|

+ sup
|z|<a, z∈∂Σϕ

|f(z)|
∫
|λ|<a, λ∈∂Σϕ

|g′ε(λ)| |dλ|

+‖f‖H∞(Σϕ)

∫
|λ|∈(a,b), λ∈∂Σϕ

|g′ε(λ)| |dλ|

≤
(

sup
|z|>b, z∈∂Σϕ

|f(z)|+ sup
|z|<a, z∈∂Σϕ

|f(z)|
)
‖g′ε‖H1(Σϕ)

+2(b−a)‖f‖H∞(Σϕ) sup
|z|∈(a,b), z∈∂Σϕ

|g′ε(z)|.

Letting first ε→ 0, using (5.9)–(5.11) along with Vitali’s theorem, and then letting a→ 0

and b→∞, using f(0) = f(∞) = 0, we obtain

lim
ε→0

‖fg′ε‖H1(Σϕ) = 0.

We have now proved the assertions (5.14) and (5.15). Thus, we obtain (5.13) under the
additional assumption that f(0) = 0.

Now let f ∈Hϕ,0 be arbitrary. Then consider

f0(z) := f(z)−2f(0)

(
1

z+1
− 1

z+2

)
,

and note that

f0 ∈Hϕ,0∩H1(Σϕ), f0(0) = 0.

Then, by the above,

f0 ∈RH(Σϕ),

and hence (5.13) holds.

We now approximate functions f ∈ Hψ,0 by functions from Hψ′,0, ψ
′ > ψ, using the

change of variables from Proposition 5.6.
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For f ∈Hψ,0 and fγ(z) = f(zγ) for γ ∈ (0,1), we now have

fγ ∈Hϕγ,0, ϕγ := min{γ−1ψ,π}> ψ.

By (5.5),

lim
γ→1−

‖f −fγ‖Hψ,0
= 0.

By Lemma 5.9, fγ ∈ RH(Σψ). Thus, we obtain the following result that the rational

functions with simple poles are dense in Hψ,0.

Theorem 5.10. Let ψ ∈ (0,π). Then

Hψ,0 =RH(Σψ). (5.16)

6. Convergence Lemmas

In this section we formulate convergence lemmas for functions in Ds and Hψ, composed

with fractional powers.

Lemma 6.1. Let s >−1 and (fk)
∞
k=1 ⊂Ds be such that

sup
k≥1

‖fk‖Ds
<∞,

and for every z ∈ C+ there exists

f(z) := lim
k→∞

fk(z).

Let g ∈ Ds satisfy

g(0) = g(∞) = 0.

For γ ∈ (0,1), let

fk,γ(z) = fk(z
γ), gγ(z) = g(zγ), z ∈ C+. (6.1)

Then

lim
k→∞

‖(fk,γ −fγ)gγ‖Ds
= 0. (6.2)

Proof. By Corollary 3.12, f ∈Ds. So without loss of generality, we can assume that f =0.

By Corollary 4.14, gγ and fk,γ belong to the algebra D∞
s , so fk,γgγ ∈ Ds. Moreover,

B := sup
k≥1

(‖fk,γ‖Ds
+‖fk,γ‖∞)<∞.

Let 0< r < R <∞ and Ωr,R = {z ∈ C+ : r ≤ |z| ≤R}. By Vitali’s theorem,

lim
k→∞

(
|fk,γ(z)|+ |f ′

k,γ(z)|
)
= 0

uniformly on Ωr,R. Therefore, the integrals∫
Ωr,R

(Rez)s

|z|s+1
|f ′

k,γ(z)gγ(z)|dS(z),
∫
Ωr,R

(Rez)s

|z|s+1
|fk,γ(z)g′γ(z)|dS(z),
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tend to 0 as k →∞. Moreover,∫
C+\Ωr,R

(Rez)s

|z|s+1
|f ′

k,γ(z)gγ(z)|dS(z)≤ sup
z∈C+\Ωr,R

|gγ(z)|‖fk,γ‖Ds
,

and ∫
C+\Ωr,R

(Rez)s

|z|s+1
|fk,γ(z)g′γ(z)|dS(z)≤ ‖fk,γ‖∞

∫
C+\Ωr,R

(Rez)s

|z|s+1
|g′γ(z)|dS(z).

Hence,

limsup
k→∞

‖fk,γgγ‖Ds
≤B

(
sup

C+\Ωr,R

|gγ(z)|+
∫
C+\Ωr,R

(Rez)s

|z|s+1
|g′γ(z)|dS(z)

)
.

Letting r→ 0 and R→∞, we obtain the assertion (6.2).

The following result is a convergence lemma for Hψ, analogous to Lemma 6.1.

Lemma 6.2. Let ψ ∈ (0,π) and (fk)
∞
k=1 ⊂Hψ be such that

sup
k≥1

‖fk‖Hψ
<∞,

and for every z ∈ C+ there exists

f(z) := lim
k→∞

fk(z).

Let g ∈Hψ satisfy

g(0) = g(∞) = 0.

For γ ∈ (0,1) and k ∈ N, let fk,γ and gγ be given by (6.1). Then

lim
k→∞

‖(fk,γ −fγ)gγ‖Hψ
= 0. (6.3)

Proof. The proof is similar to Lemma 6.2.
By Lemma 4.11, f0 ∈Hψ. Thus, we will assume that f0 =0. Let γ ∈ (ψ/π,1). By Lemma

4.9, gγ and fk,γ belong to the algebra Hψ/γ ⊂Hψ, so fk,γgγ ∈Hψ. Moreover,

B := sup
k≥1

‖fk,γ‖Hψ
<∞.

Let 0< r < R <∞ and Ir,R = {z ∈ ∂Σψ : r ≤ |z| ≤R}. By Vitali’s theorem,

lim
k→∞

(
|fk,γ(z)|+ |f ′

k,γ(z)|
)
= 0

uniformly on Ir,R. Therefore, the integrals∫
Ir,R

|f ′
k,γ(z)gγ(z)| |dz|,

∫
Ir,R

|fk,γ(z)g′γ(z)| |dz|,

tend to 0 as k →∞. Moreover,∫
∂Σψ\Ir,R

|f ′
k,γ(z)gγ(z)| |dz| ≤ sup

z∈∂Σψ\Ir,R
|gγ(z)|‖fk,γ‖Hψ

,
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and ∫
∂Σψ\Ir,R

|fk,γ(z)g′γ(z)| |dz| ≤ ‖fk,γ‖H∞(Σψ)

∫
∂Σψ\Ir,R

|g′γ(z)| |dz|.

Hence,

limsup
k→∞

‖fk,γgγ‖Hψ
≤B

(
sup

∂Σψ\Ir,R
|gγ(z)|+

∫
∂Σψ\Ir,R

|g′γ(z)| |dz|
)
.

Letting r→ 0 and R→∞, we obtain (6.3).

7. The D-calculus and its compatibility

Here we discuss functional calculus for sectorial operators A of angle less than π/2 and

functions f ∈ D∞. Because f is bounded on a closed sector containing the spectrum of
A (Corollary 3.10), f(A) may be considered via the extended holomorphic (sectorial)

calculus. If A is injective, then f(A) can be defined that way as a closed operator, but we

will show that f(A) is a bounded operator when f ∈D∞. Our methods provide estimates

for ‖f(A)‖, and we will adapt the results in Section 8 to take account of the angle of
sectoriality, by using fractional powers of operators (cf. Corollary 4.14).

Recall that a densely defined operator A on a Banach space X is sectorial of angle

θ ∈ [0,π/2) if σ(A)⊂ Σθ and, for each ϕ ∈ (θ,π],

Mϕ(A) := sup
{
‖z(z+A)−1‖ : z ∈ Σπ−ϕ

}
<∞. (7.1)

The sectorial angle θA of A is the minimal such θ. Note that Mϕ(A) is a decreasing

function of ϕ.

Let Sect(θ) stand for the class of all sectorial operators of angle θ for θ ∈ [0,π/2) on
Banach spaces, and denote Sect(π/2−) :=

⋃
θ∈[0,π/2)Sect(θ). Then A∈ Sect(π/2−) if and

only if −A generates a (sectorially) bounded holomorphic C0-semigroup on X of angle

(π/2)−θA, in the sense that the semigroup has a holomorphic extension to Σ(π/2)−θA that
is bounded on each smaller subsector. Note that these semigroups are sometimes called

sectorially bounded holomorphic semigroups in the literature. However, in this article, we

will adopt the convention that bounded holomorphic semigroups are bounded on sectors.
We will denote the semigroup as (e−tA)t≥0, and e−tA then agrees with et(A) defined

in the HP-calculus, where et(z) = e−tz. One may consult [35] for the general theory of

sectorial operators and [4, Section 3.7] for the theory of holomorphic semigroups.

Let A be a closed, densely defined operator on a Banach space X such that

σ(A)⊂ C+ and MA :=Mπ/2(A) = sup
z∈C+

‖z(z+A)−1‖<∞. (7.2)

Then ‖A(z+A)−1‖ ≤MA+1, z ∈ C+, and Neumann series (see [53, Lemma 1.1]) imply

that σ(A)⊂ Σθ ∪{0} and

‖z(z+A)−1‖ ≤ 2MA, z ∈ Σπ−θ, (7.3)
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where

θ := arccos(1/(2MA))< π/2.

So A ∈ Sect(θ) ⊂ Sect(π/2−). Conversely, if A ∈ Sect(θ) where θ ∈ [0,π/2), then (7.2)
holds. Thus, −A generates a bounded holomorphic semigroup if and only if (7.2) holds.

The constant MA is a basic quantity associated with A, and we call it the sectoriality

constant of A. Note that MtA =MA for all t > 0.
A set S of sectorial operators on the same Banach space X is uniformly sectorial of

angle θ if S ⊂ Sect(θ) and, for each ϕ ∈ (θ,π), there exists Cϕ such that Mϕ(A)≤ Cϕ for

all A ∈ S. Thus, S is uniformly sectorial of some angle θ < π/2 if and only if each A ∈ S

satisfies (7.2) and supA∈SMA <∞.
In the presentation of the D-calculus that follows, we assume that the reader is

familiar with the holomorphic functional calculus for sectorial operators, as in [35], and

in particular with the HP-calculus for negative generators of bounded C0-semigroups. We
will make extensive use of fractional powers of sectorial operators in the form (A+ z)−γ

where γ > 0. If γ is not an integer, these operators are fractional powers that can be

defined in many ways (see [44]), including using the holomorphic functional calculus
(see [35, Chapter 3]). All of these approaches are consistent with each other. Because

D∞ =
⋃∞

n=0Dn, it is possible to define the D-calculus without using fractional powers,

and this would simplify some proofs (for example, Lemma 7.1 becomes trivial, and the

formulas (7.4) and (7.8) would not be needed). Thus, we could define the D-calculus
without using fractional powers and, in particular, we could define the fractional powers

(z+A)−γ for all γ > 0. This definition would be consistent with other definitions (see

Theorem 7.4). Then we could define the Ds-calculus for all s >−1 in the way described
below, using fractional powers in (7.5).

The following simple lemma for fractional powers is a version of the moment inequality

applied to the sectorial operator (A+ z)−1.

Lemma 7.1. Let A ∈ Sect(π/2−) and γ > 0. Let �γ� be the ceiling function of γ; that is,
the smallest integer in [γ,∞). Then

‖(A+ z)−γ‖ ≤M
	γ

A /|z|γ, z ∈ C+.

Proof. When γ ∈ N, the estimate is trivial.

Let γ ∈ (0,1). By the compatibility of our calculus with the holomorphic functional

calculus for fractional powers, we may use the following standard Stieltjes formula (see
[4, (3.52)], for example):

(A+ z)−γ =
sin(πγ)

π

∫ ∞

0

t−γ(A+ z+ t)−1 dt, z ∈ C+. (7.4)

Next, let z = ρeiϕ ∈ C+. Then, using Cauchy’s theorem,

(A+ z)−γ =
sin(πγ)

π

∫ eiϕ∞

0

w−γ(A+ρeiϕ+w)−1 dw

= ei(1−γ)ϕ sin(πγ)

π

∫ ∞

0

s−γ(A+ρeiϕ+seiϕ)−1 ds.
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So,

‖(A+ z)−γ‖ ≤MA
sin(πγ)

π

∫ ∞

0

s−γ(ρ+s)−1 ds=
MA

ργ
.

In other cases, γ = (�γ�−1)+ δ where δ ∈ (0,1), and the estimate follows from the two

previous cases.

Now let s >−1 be fixed and let f ∈ Ds. We define

fDs
(A) := f(∞)− 2s

π

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)(A+α− iβ)−(s+1) dβ dα. (7.5)

Note that when s = 1 and f ∈ B, (7.5) coincides with the definition of f(A) as given by

the B-calculus in [7]; cf. (1.4).
This definition is valid, as the following simple proposition shows.

Proposition 7.2. Let A ∈ Sect(π/2−) and s >−1.

1. The map f 
→ fDs
(A) is bounded from Ds to L(X).

2. For f ∈ Ds,

lim
ε→0+

fDs
(A+ ε) = fDs

(A), (7.6)

in the operator norm topology.

Proof. Lemma 7.1 and (7.5) imply that

‖fDs
(A)‖ ≤ |f(∞)|+ 2sM

	s+1

A

π
‖f ′‖Vs

. (7.7)

Thus, the boundedness of the map f 
→ fDs
(A) from Ds to L(X) follows.

By a standard Laplace transform representation for negative fractional powers

[4, eqn. (3.56)],

(A+ z)−(s+1) =
1

Γ(s+1)

∫ ∞

0

tse−tze−tA dt, z ∈ C+. (7.8)

By the dominated convergence theorem, z 
→ (A+ z)−(s+1) is continuous (even holomor-

phic) on C+ in the operator norm topology.
The operators (A+ε)ε≥0 are uniformly sectorial of angle θ; more precisely, MA+ε ≤MA

[35, Proposition 2.1.1 f)]. By Lemma 7.1, this implies that

‖(A+ ε+ z)−(s+1)‖ ≤M
	s+1

A |z|−(s+1), ε≥ 0, z ∈ C+. (7.9)

Now (7.6) follows from applying (7.5) to A+ ε, letting ε→ 0+ and using the dominated
convergence theorem.

Remark 7.3. The property (7.6) can be compared with Corollary 11.2 where a direct

proof is given that the shifts form a bounded holomorphic C0-semigroup on Ds. To deduce
(7.6), one also needs that if fε(z) = f(z+ε), then (fε)Ds

(A) = fDs
(A+ε). By Theorem 5.1,

it suffices that this holds for f = rλ, λ ∈C+; that is, to show that (rλ)Ds
(A) = (λ+A)−1.

We show this in Theorem 7.6, but the argument uses (7.6).
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Let fHP(A) stand for a function f of A defined by the HP functional calculus when

f is in the HP algebra LM, and let fHol(A) denote a function f of A given by the

holomorphic functional calculus when f is in the domain of that calculus. The following
statement shows that both calculi are compatible with the D-calculus and, moreover, that

the definitions of fDs
(A) agree for the various values of s for which f ∈ Ds.

Theorem 7.4. Let A ∈ Sect(π/2−), and let f ∈ Ds, s >−1.

(i) If A is injective, then

fDs
(A) = fHol(A). (7.10)

(ii) If σ ≥ s, then

fDσ
(A) = fDs

(A). (7.11)

(iii) If f ∈ LM∩Ds, then

fDs
(A) = fHP(A). (7.12)

In particular, (7.12) holds if f ∈ LM and s > 0.

Proof. We start by proving (7.10). Assume that A is injective, and A ∈ Sect(θ), where
θ ∈ (0,π/2). Let ψ ∈ (θ,π/2). Let f ∈ Ds, s >−1, and assume (without loss of generality)

that f(∞) = 0. By the definition of the holomorphic functional calculus,

A(1+A)−2fHol(A) =
1

2πi

∫
∂Σψ

λf(λ)

(λ+1)2
(λ−A)−1 dλ.

Because

f(λ) =−2s

π

∫ ∞

0

αs

∫ ∞

−∞

f ′(α+ iβ)

(λ+α− iβ)s+1
dβ dα, λ ∈ C+,

Fubini’s theorem and Cauchy’s theorem imply that

A(1+A)−2fHol(A)

=−2s

π

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)

(
1

2πi

∫
∂Σψ

λ(λ−A)−1

(λ+1)2(λ+α− iβ)s+1
dλ

)
dβ dα

=−2s

π
A(1+A)−2

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)(A+α− iβ)−(s+1)dβ dα

=A(1+A)−2fDs
(A).

Hence, (7.10) holds.

Now we no longer assume that A is injective. We infer by (7.10) that

fDs
(A+ ε) = fDσ

(A+ ε)

for all ε > 0 and σ ≥ s. Letting ε→ 0 and using Proposition 7.2, we obtain the assertion

(7.11).

https://doi.org/10.1017/S1474748021000414 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000414


Functional calculi for sectorial operators 1437

Finally, if f ∈ LM∩Ds for some s >−1, then f ∈ B∩Ds, and using (7.11), we have

fHP(A) = ΦA(f) = fD1
(A) = fDs

(A).

Remark 7.5. If f has zero polynomial limits at zero and at infinity in the sense of

[35, p. 27], then the proof above does not require the regularisation factor λ(λ+1)−2.

Hence, fD(A) = fHol(A) regardless of the injectivity of A. One can show that fD(A) =
fHol(A) even when f belongs to the extended Riesz–Dunford function class (for example,

f(z) = e−tz, t > 0), but we omit a discussion of this here (cf. the proof of Lemma 7.11).

Recall that Ds ⊂Dσ if −1< s≤ σ, and the space

D∞ :=
⋃

s>−1

Ds

is an algebra, by Lemma 3.21. Thus, it is a plausible and natural domain for a functional

calculus, which we now define.

Theorem 7.6. Let A ∈ Sect(π/2−). The formula (7.5) defines an algebra homomor-
phism:

ΨA :D∞ 
→ L(X), ΨA(f) = fDs
(A), f ∈ Ds, s >−1.

Moreover,

(i) ΨA(rλ) = (λ+A)−1, λ ∈ C+.

(ii) ΨA is bounded in the sense that for every s >−1 there exists Cs(A) such that

‖ΨA(f)‖ ≤ |f(∞)|+Cs(A)‖f‖Ds
, f ∈ Ds. (7.13)

Specifically, (7.7) holds.

Moreover, ΨA is the unique algebra homomorphism from D∞ to L(X) that satisfies (i)
and (ii).

The homomorphism ΨA will be called the D-calculus.

Proof. It follows from (7.11) that ΨA is well-defined by (7.5) and from (7.10) that

(rλ)Ds
(A+ ε) = (λ+ ε+A)−1 for ε > 0. Letting ε→ 0 and using (7.6) gives (i). Moreover,

(7.13) is a direct consequence of Proposition 7.2.

We will now prove that ΨA is a homomorphism. Let f,g ∈D∞. Then f ∈Dr and g ∈Dt

for some strictly positive s and t ; hence, fg ∈ Ds+t+1 by Lemma 3.21. Because LM is

dense in Ds for every s > 0 by Corollary 5.2, there exist (fn)
∞
n=1 and (gn)

∞
n=1 from LM

such that

fn → f in Ds and gn → g in Dt, n→∞,

and then, in view of Lemma 3.21, fngn → fg in Ds+t+1 as n→∞.

By the product rule for the HP-calculus and (7.12),

ΨA(fngn) = (fngn)HP(A) = ΨA(fn)ΨA(gn), n≥ 1.
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Passing to the limit when n→∞ and using (7.13), it follows that

ΨA(fg) = ΨA(f)ΨA(g).

Let Ψ : D∞ → L(X) be an algebra homomorphism satisfying (i) and (ii). Then Ψ and

ΨA coincide on {rλ : λ ∈ C+}. Because A is densely defined, Ψ(1) = 1 (see [8, Section 6,

Observation (2)], so Ψ and ΨA coincide on the span of these functions that are dense

in Ds (Theorem 5.1). Because Ψ and ΨA are both bounded on Ds, it follows that they
coincide on each Ds and hence on D∞.

Remark 7.7. If A is an operator for which a D-calculus exists with the properties (i)

and (ii) given in Theorem 7.6, then A ∈ Sect(π/2−). This follows from (3.20) and the

properties (i) and (ii). By combining this with Theorem 7.6, we obtain Theorem 1.1.
Note also that, if (i) holds for some λ ∈C+, then it holds for all λ ∈C+, by the resolvent

identity.

The Banach algebras D∞
s , s > −1, are subalgebras of D∞, so we obtain the following

corollary by restricting the D-calculus.

Corollary 7.8. Let A ∈ Sect(π/2−) and s > −1. Then there exists a bounded algebra

homomorphism Ψs
A :D∞

s 
→ L(X) such that

(i) Ψs
A(rλ) = (λ+A)−1, λ ∈ C+.

(ii) Ψs
A is bounded in the Ds-norm; that is, there exists Cs(A) such that

‖ΨA(f)‖ ≤ Cs(A)‖f‖Ds
, f ∈ Ds.

Moreover, Ψs
A is the unique algebra homomorphism from D∞

s to L(X) that satisfies (i)

and (ii).

From now onwards, we will write fD(A) instead of ΨA(f), for f ∈ D∞. When f(z) =

e−tz, we will continue to use the notation e−tA for f(A), because the D-calculus agrees

with the HP-calculus by Theorem 7.4. So (e−tA)t≥0 form the C0-semigroup generated
by −A, and it extends to a bounded holomorphic semigroup.

Let g :C+ →C+ be a holomorphic function and assume that rλ ◦g ∈D∞ for all λ∈C+.

Because the functions (rλ)λ∈C+
satisfy the resolvent identity, the operators

((rλ ◦g)D(A))λ∈C+
⊂ L(X)

also satisfy the resolvent identity; that is, they form a pseudo-resolvent. In particular,

their kernels and their ranges are independent of λ, and they form the resolvent of an
operator B if and only if the common kernel is {0} and the domain of B is the common

range of the pseudo-resolvent (see [58, Section VIII.4]).

Corollary 7.9. Let A,B ∈ Sect(π/2−), and let g : C+ → C+ be holomorphic. Assume

that, for each s >−1, there exists σ >−1 such that
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(a) For all f ∈ Ds, f ◦g ∈ Dσ, and

(b) for all λ ∈ C+, (rλ ◦g)D(A) = (λ+B)−1.

Then (f ◦g)D(A) = fD(B) for all f ∈ D∞.

Proof. By assumption (a), Corollary 3.13 and the closed graph theorem, f 
→ f ◦ g is a

bounded map from Ds to Dσ. Moreover, the D-calculus for A is a bounded map from Dσ

to L(X). Hence, the composition is a bounded map from Ds to L(X), and by assumption
(b) it sends rλ to (λ+B)−1 for all λ ∈ C+. Moreover, the maps collectively form an

algebra homomorphism from D∞ to L(X). By the uniqueness in Theorem 7.6, this map

is the D-calculus for B.

In the context of Corollary 7.9, the operator B is sometimes written as g(A), but the

precise meaning depends on the specific situation.
There is also a version of Corollary 7.9 for fixed values of s and σ, using the D∞

s - and

D∞
σ -calculi.

Examples 7.10. Examples of functions g and operators B that satisfy the conditions of

Corollary 7.9 include the following:

1. g(z) = z−1, if A is injective (with dense range); σ = s, B = A−1. Then f ◦ g is the

function f̃ ∈Ds as in Lemma 3.17. Note that f̃D(A) is defined as a bounded operator
on X, even if A is not injective. If A0 is the restriction of A to X0, the closure of the

range of A, then f̃D(A) acts as A−1
0 on X0 and as the sectorial limit f(∞) on the

kernel of A. If X is reflexive, this determines f̃D(A) on X.

2. g(z) = tz, where t > 0; σ = s, B = tA. See Lemma 3.17.

3. g(z) = z+η, where η ∈ C+; σ = s, B =A+η. See Remark 7.3.

4. g(z) = zγ , where γ ∈ (0,1); s > −1,σ > −1; B = Aγ (as defined in the holomorphic

functional calculus). See Corollary 4.14 for assumption (a) in Corollary 7.9 and

Corollary 7.12 for assumption (b). The result also holds for γ ∈ (1,π/(2θ)).

5. Examples (2), (3) for η ∈ R+ and (4) are Bernstein functions. By Lemma 3.20,

rλ ◦ g ∈ Ds for all Bernstein functions g and s > 2. We will show in the proof of

Theorem 10.5 that (rλ ◦g)D(A) = (λ+g(A))−1, where g(A) is a sectorial operator.

In Example 7.10(4), we have introduced a fractional power Aγ , where γ > 0. These
operators are defined in various ways, including the extended holomorphic functional

calculus. To justify the example, we need the following lemma about fractional powers,

which is probably known at least in simpler form. For γ ∈ (0,1) and ν ∈N, it follows easily
from a standard result [44, Proposition 5.1.4]. We give a proof that uses the holomorphic

functional calculus for fractional powers as in [35, Section 3.1].

Lemma 7.11. Let A ∈ Sect(π/2−), γ ∈ (0,1) and ν > 0. In the operator norm topology,

lim
ε→0+

((A+ ε)γ + z)−ν = (Aγ + z)−ν, z ∈ C+.

Proof. Let z ∈ C+ be fixed, and let

f(λ) = (λγ + z)
−ν

, λ ∈ C+.
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Then f ∈H∞(C+) and, by considering the derivative of μ 
→ (μ+z)−ν , we see that there

exists a constant C (depending on z ) such that

|f(λ)−f(0)| ≤ C|λ|γ, |f(λ)| ≤ C|λ|−γν, λ ∈ C+.

Thus, f has polynomial limits at 0 and∞, and so f belongs to the extended Riesz–Dunford

class defined in [35, Lemma 2.2.3]. In other words,

g0(λ) := f(λ)− z−ν(1+λ)−1

has polynomial decay at 0 and ∞. Moreover, there exists a constant C ′ (independent
of ε) such that

|f(λ+ ε)−f(ε)| ≤ C ′|λ|γ, |f(λ+ ε)| ≤ C ′|λ|−γν, λ ∈ C+, ε ∈ (0,1). (7.14)

Let

gε(λ) = f(λ+ ε)−f(ε)(1+λ)−1.

Using the definition of the primary functional calculus [35, Section 2.3.1], we have

f(A+ ε)−f(A) = gε(A)−g0(A)+(f(ε)−f(0))(I+A)−1,

gε(A)−g0(A) =
1

2πi

∫
Σψ

(gε(λ)−g0(λ))(λ−A)−1 dλ,

where ψ ∈ (θ,π/2). By the dominated convergence theorem,

lim
ε→0+

‖(gε(A)−g0(A)‖= 0.

The pointwise convergence of gε− g0 to zero is clear, and the existence of an integrable

majorant follows easily from (7.14).

Corollary 7.12. Let A∈ Sect(π/2−) and γ ∈ (0,1). Let f ∈D∞ and fγ(z) = f(zγ). Then
the following hold:

1. In operator norm,

lim
ε→0+

fD((A+ ε)γ) = fD(A
γ).

2. (fγ)D(A) = fD(A
γ).

Proof. The proof of (1) follows from Lemma 7.11 in essentially the same way as the last

paragraph of the proof of Proposition 7.2.
By Corollary 4.14, h∈D∞. By (7.10) and the composition theorem for the holomorphic

functional calculus [35, Theorem 2.4.2], we have hD(A+ε) = fD((A+ε)γ). Letting ε→ 0+

and using (7.6) and (1), we obtain (2).

8. The calculus on Hardy–Sobolev algebras

Given the negative generator A of a bounded holomorphic C0-semigroup on a Banach

space X, the D-calculus allows us to extend the B-calculus to a much larger class of

functions. A drawback of the D-calculus is that it does not respect the sectoriality angle
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of A, so the results within the D-calculus are independent of the sectoriality angle and
confined to holomorphic functions on C+. To remedy that problem, we introduce in this

section a version of the D-calculus adjusted to an appropriate Hardy–Sobolev algebra

on a sector in the right half-plane. Though the Hardy–Sobolev algebra has a ‘stronger’
norm, it appears to be an adequate substitute for D∞ in the setting of sectors, and it has

significant applications, as we will see in Section 10.

The basic idea is a very simple change of variable in the D-calculus. If Ψs
A is the D∞

s -

calculus for a sectorial operator A, then one sets ΥA(f) := Ψs
Aγ (f1/γ) for appropriate

values of γ, determined by the sectoriality angle θA of A. This definition does not depend

on the precise choice of γ, by Corollary 7.12. The definitions also agree for different s>−1

by Theorem 7.4(ii), and we set s = 0 for convenience. As we will show, this eventually
leads to a new calculus for Hardy–Sobolev algebras on sectors.

Throughout this section, we assume that A ∈ Sect(θ), 0 < θ < ψ < π, and we let γ :=

π/(2ψ) and, as before,

Mψ(A) := sup
z∈Σπ−ψ

‖z(A+ z)−1‖.

Then Aγ ∈ Sect(π/2−), and θAγ = γθA ∈ [θA,π/2) [35, Proposition 3.1.2]. We are
particularly interested in cases where ψ is close to θ, so that Hψ is as large as possible.

8.1. The operator f(A) for f ∈Hψ

Recall from Lemmas 4.9 and 4.13(i) that if f ∈Hψ and f1/γ(z) = f(z1/γ), then

f ′
1/γ ∈H1(C+), f1/γ(∞) = f(∞)

and, consequently, f1/γ ∈D0. Together with Proposition 4.17 this motivates the following

definition of the operator fH(A) by means of the D-calculus applied to Aγ :

fH(A) := f1/γ(∞)− 1

π

∫ ∞

0

∫ ∞

−∞
f ′
1/γ(α+ iβ)(Aγ +α− iβ)−1 dβ dα. (8.1)

The right-hand side of (8.1) converges in the uniform operator topology, and by (7.7) and

(4.27),

‖fH(A)‖ ≤ |f(∞)|+ MAγ

π
‖f1/γ‖D0,0

≤ |f(∞)|+MAγ‖f ′‖H1(ψ) ≤MAγ‖f‖′Hψ
. (8.2)

If f ∈ Hψ and A is injective, then fHol(A) can also be defined using the holomorphic

functional calculus and the composition rule within it [35, Theorem 2.4.2]:

fHol(A) = f1/γ,Hol(A
γ) :=

1

2πi
[Aγ(1+Aγ)−2]−1

∫
∂Σω

λf(λ1/γ)

(λ+1)2
(λ−Aγ)−1 dλ,

for 0 ≤ θ < ω < ψ. The following proposition shows that our definition (8.1) of fH(A)

coincides with fHol(A) when A is injective, and various other properties are easily deduced

from the definition above and corresponding properties of the D-calculus.

Proposition 8.1. Let f ∈Hψ and A ∈ Sect(θ), where 0≤ θ < ψ < π.

(i) fH(A) does not depend on the choice of ψ.
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(ii) If ν ∈ (0,1) and fν(z) = f(zν), then (fν)H(A) = fH(Aν).

(iii) If f ∈ D∞ and θ < π/2, then fH(A) = fD(A).

(iv) If A is injective, then fH(A) = fHol(A).

(v) In the operator norm topology, limε→0+ fH(A+ ε) = fH(A).

Proof. Statements (i), (ii) and (iii) follow from Corollary 7.12(ii) and Lemma 4.9.

Statement (iv) follows from (iii) and Theorem 7.4(i). Statement (v) follows from

Proposition 7.2.
An alternative direct proof of (iv) can be given as follows. We may assume that

f(∞) = 0. Because f1/γ ∈ D0, Corollary 3.10 gives

f1/γ(z) =− 1

π

∫ ∞

0

∫ ∞

−∞

f ′
1/γ(α+ iβ)

z+α− iβ
dβ dα, z ∈ C+.

Using Fubini’s theorem and some basic properties of the holomorphic functional calculus,

we obtain

Aγ(1+Aγ)−2fHol(A)

=− 1

π

∫ ∞

0

∫ ∞

−∞
f ′
1/γ(α+ iβ)

(
1

2πi

∫
∂Σω

λ(λ−Aγ)−1

(λ+1)2(λ+α− iβ)
dλ

)
dβ dα

=−Aγ(1+Aγ)−2

(
1

π

∫ ∞

0

∫ ∞

−∞
f ′
1/γ(α+ iβ)(Aγ +α− iβ)−1dβ dα

)
=Aγ(1+Aγ)−2fH(A),

and (iv) follows.

Now we can formally define the H-calculus.

Theorem 8.2. Let A ∈ Sect(θ), where θ ∈ [0,π/2). For any ψ ∈ (θ,π) the formula (8.1)

defines a bounded algebra homomorphism:

ΥA :Hψ 
→ L(X), ΥA(f) = fH(A).

The homomorphism ΥA satisfies ΥA(rλ) = (λ+A)−1 for all λ ∈ Σπ−ψ, and it is the

unique homomorphism with these properties.

The homomorphism ΥA will be called the H-calculus for A.

Proof. The boundedness of ΥA follows from either (8.13) or (8.2). The homomorphism

property is implied by Corollary 7.8. Indeed, employing the functional calculus Ψ0
A on

D∞
0 given by Corollary 7.8, one has

ΥA(fg) = Ψ0
A((fg)1/α) = Ψ0

A(f1/αg1/α)

= Ψ0
A(f1/α)Ψ

0
A(g1/α) = ΥA(f)ΥA(g).

The uniqueness follows from Theorem 5.10.

Remark 8.3. If A is any operator for which there is an Hψ-calculus as in Theorem

8.2, then A ∈ Sect(θ) for some θ ∈ [0,ψ). This follows from (4.24), and in combination
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with Theorem 8.2 this yields the proof of Theorem 1.2. If ΥA(rλ) = (λ+A)−1 for some

λ ∈ Σπ−ψ, then this holds for all λ ∈ Σπ−ψ, by the resolvent identity.

8.2. The operator arccot(Aγ) and the arccot formula

In this section, we derive an alternative to the formula (8.1) for the H-calculus, in the

form of an operator counterpart of Proposition 4.19 for scalar functions. In addition to

its intrinsic interest, it helps us to compare our approach with the approach developed
by Boyadzhiev [12], as we do at the end of this section.

We introduce as an operator kernel the function

g(z) := arccot(z) =
1

2i
log

(
z+ i

z− i

)
, z ∈ C+,

already considered in Example 3.5. Note that g ∈D0, g(∞) = 0, g′(z) =−(z2+1)−1, and

(4.38) holds:

arccot(z) =
1

π

∫ ∞

0

∫ ∞

−∞

(z+α− iβ)−1

(α+ iβ)2+1
dβ dα z ∈ C+.

Let A ∈ Sect(θ), where θ ∈ [0,π). Let ψ ∈ (θ,π) and γ = π/(2ψ). By the D-calculus in

(7.5) and (7.7),

arccot(Aγ) := arccotD(A
γ) =

1

π

∫ ∞

0

∫ ∞

−∞

(Aγ +α− iβ)−1

(α+ iβ)2+1
dβ dα, (8.3)

where the integral converges in the operator norm, and

‖arccot(Aγ)‖ ≤ MAγ

π
‖arccotz‖D0

< 3MAγ , MAγ := sup
z∈C+

‖z(Aγ + z)−1‖. (8.4)

We will provide an alternative estimate for the operator arccot(Aγ/sγ). Following
(4.40), we may formally write

arccotint(A
γ) :=

1

4π

∫ ∞

0

log

∣∣∣∣1+ tγ

1− tγ

∣∣∣∣((t− eiψA)−1+(t− e−iψA)−1
)
dt (8.5)

+
1

4i

∫
|λ|=1, argλ∈(ψ,2π−ψ)

(λ−A)−1 dλ.

Lemma 8.4. Let A ∈ Sect(θ) and γ = π/(2ψ), where 0 ≤ θ < ψ < π. The operator

arccotint(A
γ) is well-defined and

‖arccotint(Aγ)‖ ≤Mψ(A)
π

2
. (8.6)

https://doi.org/10.1017/S1474748021000414 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748021000414


1444 C. Batty, A. Gomilko, and Y. Tomilov

Proof. Using (4.43), one notes that

‖arccot(Aγ)‖ ≤ Mψ(A)

2π

∫ ∞

0

log

∣∣∣∣1+ tγ

1− tγ

∣∣∣∣ dtt +
Mψ(A)

4

∫
|λ|=1, argλ∈(ψ,2π−ψ)

|dλ|
|λ|

=Mψ(A)

(
ψ

2
+

(π−ψ)

2

)
=Mψ(A)

π

2
.

The next lemma shows that the formula arccotint(A
γ) coincides with the definition

of arccot(Aγ) by the D-calculus. When A is injective, arccot(Aγ) is defined in the

holomorphic functional calculus by

arccotHol(A
γ) :=

1

2πi
[A(1+A)−1]−1

∫
∂Σω

λarccot(λγ)

λ+1
(λ−A)−1 dλ, (8.7)

where 0≤ θ < ω < ψ < π.

Lemma 8.5. Under the assumptions above, arccotint(A
γ) = arccotD(A

γ). If A is

injective, then arccotint(A
γ) = arccotHol(A

γ).

Proof. Assume first that A is injective. Using (8.7), (4.40) and (8.3), we obtain

A(1+A)−1 arccotHol(A
γ)

=
1

2πi

∫
∂Σω

z arccot(zγ)

z+1
(z−A)−1 dz

=
1

4π

∫ ∞

0

log

∣∣∣∣1+ tγ

1− tγ

∣∣∣∣( 1

2πi

∫
∂Σω

z

z+1
(z−A)−1Vψ(z,t)dz

)
dt

t

+
1

4i

∫
|λ|=1, argλ∈(ψ,2π−ψ)

(
1

2πi

∫
∂Σω

z(z−A)−1

(z+1)(λ− z)
dz

)
dλ

=A(A+1)−1 1

4π

∫ ∞

0

log

∣∣∣∣1+ tγ

1− tγ

∣∣∣∣((t− eiψA)−1+(t− e−iψA)−1
)
dt

+A(A+1)−1 1

4i

∫
|λ|=1, argλ∈(ψ,2π−ψ)

(λ−A)−1 dλ

=A(A+1)−1 arccotint(A
γ).

Thus, the second statement holds. Moreover, arccotHol(A
γ) = arccotD(A

γ), by Theorem

7.4, and the first statement follows.

If A is not injective, we have arccotint((A+ ε)γ) = arccotD((A+ ε)γ) from the case

above. When ε→ 0+, the left-hand side converges in operator norm to arccotint(A
γ) by

applying the dominated convergence theorem in (8.5), and the right-hand side converges

to arccotD(A
γ) by Proposition 7.2.

Theorem 8.6. Let A ∈ Sect(θ) and γ = π/(2ψ), where 0≤ θ < ψ < π. If f ∈Hψ and fψ
is given by (4.36), then

fH(A) = f(∞)− 2

π

∫ ∞

0

f ′
ψ(t) arccot(A

γ/tγ)dt, (8.8)
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where the integral converges in the uniform operator topology, and

‖fH(A)‖ ≤ |f(∞)|+ Mψ(A)

2
‖f ′‖H1(Σψ) ≤Mψ(A)‖f‖Hψ

. (8.9)

Moreover, if f(∞) = 0, then

‖fH(A)‖ ≤ Mψ(A)

2
‖f‖Hψ

. (8.10)

Proof. Let ϕ ∈ (θ,ψ) be fixed. Let g(z) = arccot(z) and gγ(z) = arccot(zγ). Because

g ∈ D0 ⊂ Hγϕ, we have gγ ∈ Hϕ. Let qt(z) = arccot(zγ/tγ), t > 0. By scale-invariance

(Lemma 4.9), ‖qt‖Hϕ
= ‖gγ‖Hϕ

. It follows from Lemma 2.2 that t 
→ qt is continuous
from (0,∞) to Hϕ. Hence, in view of Proposition 4.19, we have

f = f(∞)− 2

π

∫ ∞

0

f ′
ψ(t)qt dt, (8.11)

where the integral is understood as a Bochner integral in Hϕ. Combining Proposition

8.1,(ii) and (iii) with Lemmas 8.4 and 8.5, we infer that

ΥA(qt) = (gt)H(A) = arccot(Aγ/tγ), t > 0. (8.12)

Hence, by applying the bounded operator ΥA to both sides of (8.12), we obtain (8.8).

The estimate (8.9) follows from (8.8) and Lemma 8.4. Given (8.9), the estimate (8.10) is
direct.

Remarks 8.7. 1. If Mψ(A) = 1 in (8.9) – that is, if −A generates a holomorphic C0-

semigroup that is contractive on Σ(π/2)−ψ – then the H-calculus is contractive. This

seems to be a new feature that has not been present in constructions of other calculi in
the literature.

2. An alternative to the estimate (8.9) is

‖fH(A)‖ ≤ |f(∞)|+3MAγ‖f ′
ψ‖L1(R+). (8.13)

This is obtained from (8.8), using the estimates (7.7) (with s=0) and (3.23) to obtain the
estimate ‖arccot(Aγ)‖ ≤ 3πMAγ . The constant 3 is not optimal. It is possible to provide

explicit bounds for MAγ in terms of MA. However, we refrain from doing so in this article,

and we refer the interested reader to [6, Propositions 5.1 and 5.2].

Finally, in this section we discuss the relations between [12] and the present work. For
ψ ∈ (0,π), as in [12], let

kψ(t) =
1

π2
log

∣∣∣∣coth( πt

4ψ

)
coth

(
πt

4(π−ψ)

)∣∣∣∣ .
Note that kψ is an even function on R\{0}, and ‖kψ‖L1(R) = 1.
For any f ∈ L∞(R+), let

(f ◦kψ)(t) :=
∫ ∞

0

f(s)kψ (log(t/s))
ds

s
, t > 0,
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and for A ∈ Sect(θ), θ ∈ [0,ψ), define

Wψ(A,t) =−A

2

(
e−iψ(A− e−iψt)−2+ eiψ(A− eiψt)−2

)
. (8.14)

It was proved in [12, Theorem 3.1] that if A ∈ Sect(θ), A has dense range and∫ ∞

0

|〈Wψ(A,t)x,x
∗〉|dt <∞, x ∈X, x∗ ∈X∗, (8.15)

then A admits a bounded H∞(Σψ)-calculus given by

〈f(A)x,x∗〉=
∫ ∞

0

〈Wψ(A,t)x,x
∗〉(fψ ◦kψ)(t)dt, x ∈X, x∗ ∈X∗, (8.16)

where the integral converges absolutely (in the weak sense). Conversely, if ψ ∈ (θ,π) and

ϕ ∈ (θ,ψ) are such that A has a bounded H∞(Σϕ)-calculus, then (8.15) holds. (Note that
in this situation A has a bounded H∞(Σψ)-calculus given by (8.16), by the uniqueness of

the calculus.) The formula (8.16) is obtained in [12] by rather involved Fourier analysis,

and some technical details are omitted in [12].

In [12, Proposition 5.1] it is observed that if f ∈ H∞(Σψ) and is holomorphic in a
larger sector, and f ′

ψ ∈ L1(R+), f
′
ψ(∞) = 0 (this assumption is not relevant), then one

can integrate by parts and rewrite (8.16) as

f(A) =

∫ ∞

0

Vψ(A,t)(f
′
ψ ◦kψ)(t)

dt

t
, (8.17)

where

Vψ(A,t) =− t

2

(
e−iψ(A− te−iψ)−1+ eiψ(A− teiψ)−1

)
,

and the integral converges absolutely. This formally leads to the estimate (8.9). Though

our reproducing arccot formula (8.8) was inspired by (8.17), it is not easy to put formal

considerations in [12] into the theory of functional calculi considered in this article. One
can relate (8.17) to (8.8) and show that the formulas are essentially equivalent within the

H-calculus. This requires a number of technicalities, and we intend to communicate them

elsewhere. Here we note only that f ′
ψ ∈ L1(R+) and f ∈H∞(Σψ) (for ψ = π/2) do not

imply that f ∈Hψ in general, as shown by an intricate example kindly communicated to

us by A. Borichev.

9. Convergence Lemmas and Spectral Mapping Theorems

9.1. Convergence Lemmas

Given a negative semigroup generator A, a convergence lemma for the holomorphic
functional calculus is a useful result allowing one to deduce the convergence of (fk(A))

∞
k=1

to f(A) from rather weak assumptions on convergence of (fk)
∞
k=1 to f ; see [14, Lemma

2.1], [35, Proposition 5.1.4] and [9, Theorem 3.1], for example.
The following result is similar to a convergence lemma for the B-calculus in [7, Theorem

4.13 and Corollary 4.14] (see also [8, Section 8.1]). However, the different convergence

lemmas deal with different classes of functions. To adjust the convergence lemma from [7]
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to the current setting, we apply the change of variables method used in previous sections
and derive a variant of the convergence lemma for the D-calculus.

In the following result, f(A) refers to the D-calculus.

Theorem 9.1. Let A ∈ Sect(π/2−). Let s >−1 and let (fk)k≥1 ⊂Ds be such that

sup
k≥1

‖fk‖Ds
<∞, (9.1)

and there exists

f(z) := lim
k→∞

fk(z), z ∈ C+.

Let g ∈ Ds satisfy

g(0) = g(∞) = 0.

Then

lim
k→∞

‖(f(A)−fk(A))g(A)‖= 0. (9.2)

In particular, if A has dense range, then

lim
k→∞

‖f(A)x−fk(A)x‖= 0, (9.3)

for all x ∈X.

Proof. By assumption, there exists θ ∈ [0,π/2) such that A ∈ Sect(θ). By Corollary 3.12
we have f ∈ Ds. Thus, without loss of generality, we can assume that f ≡ 0.

Let γ ∈ (1,π/(2θ)). Then by Corollary 7.12, using the notation of (6.1),

fk(A) = fk,1/γ(A
γ) and g(A) = g1/γ(A

γ).

Because g1/γ ∈ D∞
0 , fk,1/γ ∈ D∞

0 and fk,1/γg1/γ ∈ D∞
0 (see Corollary 4.14) and the D-

calculus is an algebra homomorphism, we have

fk(A)g(A) = fk,1/γ(A
γ)gγ(A

γ) = (fk,1/γg1/γ)(A
γ).

Now (9.2) follows from Lemma 6.1 and the continuity of the D-calculus given by
Proposition 7.2(1).

Let g(z) = z(1+ z)−2 and note that g ∈ Ds and g vanishes at zero and at infinity. If A

has dense range, then the range of g(A) =A(1+A)−2 is dense as well (see [41, Proposition
9.4], for example). Because supk≥1 ‖fk(A)‖<∞, (9.2) implies (9.3).

In the following result, f(A) refers to the H-calculus.

Theorem 9.2. Let A ∈ Sect(θ), and let ψ ∈ (θ,π). Let (fk)k≥1 ⊂Hψ be such that

sup
k≥1

‖fk‖Hψ
<∞,

and there exists

f(z) := lim
k→∞

fk(z), z ∈ C+.
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Let g ∈Hψ satisfy

g(0) = g(∞) = 0.

Then

lim
k→∞

‖(f(A)−fk(A))g(A)‖= 0.

In particular, if A has dense range, then

lim
k→∞

‖f(A)x−fk(A)x‖= 0,

for all x ∈X.

Proof. The proof is very similar to Theorem 9.1. Corollary 3.12 is replaced by Lemma

4.11, the compatibility with fractional powers follows from the definitions and Proposition
8.1(i), Corollary 4.14 is replaced by Lemma 4.9, Lemma 6.1 is replaced by Lemma 6.2

and (7.6) is replaced by Corollary 7.12.

9.2. Spectral mapping theorems

Given a semigroup generator −A, a spectral mapping theorem for a functional calculus
ΞA signifies informally that ΞA is associated to A in a ‘natural’ way. However, in general,

the spectral ‘mapping’ theorem states only the inclusion f(σ(A)) ⊂ σ(ΞA(f)). Equality

may fail here even for functions such as e−tz and for rather simple operators A; see
[23, Section IV.3], for example. Though one may expect only the spectral inclusion as

above, the equality f(σ(A))∪{f(∞)}= σ(ΞA(f))∪{f(∞)} sometimes holds if A inherits

some properties of bounded operators such as strong resolvent estimates. Note that the

spectral mapping theorem may not hold even for bounded operators if the functional
calculus possesses only weak continuity properties, as discussed in [10].

The following statement shows that the D-calculus possesses the standard spectral

mapping properties. It is similar to [7, Theorem 4.17], with the addition of a statement
about approximate eigenvalues. Recall that for f ∈ D∞, its values f(∞) at infnity and

f(0) at 0 are defined by (3.27) and (3.28). This convention is used below.

Theorem 9.3. Let A ∈ Sect(π/2−), f ∈ D∞ and λ ∈ C.

1. If x ∈D(A) and Ax= λx, then fD(A)x= f(λ)x.

2. If x∗ ∈D(A∗) and A∗x∗ = λx∗, then fD(A)
∗x∗ = f(λ)x∗.

3. If (xn)n≥1 are unit vectors in D(A) and limn→∞ ‖Axn − λxn‖ = 0, then
limn→∞ ‖fD(A)xn−f(λ)xn‖= 0.

4. One has σ(fD(A))∪{f(∞)}= f(σ(A))∪{f(∞)}.

Proof. The statements (1) and (2) are direct corollaries of (7.5) and the reproducing

formula for the Ds-spaces given in Corollary 3.10.
For (3), we use the F -product of the semigroup (e−tA)t≥0, as introduced in [18].

Let Y be the Banach space of all bounded sequences y := (yn)n≥1 in X such that

limt→0+ ‖e−tAyn−yn‖= 0 uniformly in n, where (e−tA)t≥0 is the bounded holomorphic
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C0-semigroup generated by −A. Let Z be the closed subspace of Y consisting of the
sequences y such that limn→∞ ‖yn‖= 0, and let Ỹ = Y/Z and Q : Y → Ỹ be the quotient

map. Then (e−tA)t≥0 induces a bounded holomorphic C0-semigroup (e−tÃ)t≥0 on Ỹ ,

whose negative generator Ã is given by

D(Ã) = {Q(y) : yn ∈D(A),(Ayn) ∈ Y }, Ã(Qy) =Q((Ayn)).

Then x := (xn)∈ Y , Qx∈D(Ã) and ÃQ(x) = λQ(x). It follows from (1) that fD(Ã)Qx=
λQx. However, it is very easy to see that fD(Ã)Qx = Q((fD(A)xn)) (see [18, Theorem

1.7(i)]), and this establishes (3).

To prove the spectral mapping theorem in (4), we follow the Banach algebra method
used in [7] for similar purposes and inspired by [37, Section 16.5] and [16, Section 2.2].

We may assume without loss of generality that f(∞) = 0. Let A be the bicommutant of

{(z+A)−1 :−z ∈ ρ(A)} in L(X), so A is a commutative Banach algebra and the spectrum

of fD(A) in A coincides with the spectrum in L(X). Observe that σ(A)⊂ C+∪{0}.
Let χ be any character of A. If χ((1+A)−1) = 0, then χ((z+A)−1) = 0 for all z ∈ C+,

and hence χ(f(A)) = 0 = f(∞). Otherwise, by the resolvent identity, χ((z+A)−1) =

(z+λ)−1 for some λ ∈ σ(A) and all z ∈C+. Let s >−1 be such that f ∈Ds. Noting that
the Stieltjes representation (7.4) converges in the uniform operator topology, we infer

that χ((z+A)−(s+1)) = (z+λ)−(s+1),z ∈ C+. Applying χ to (7.5) gives

χ(fD(A)) =−2s

π

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)(λ+α− iβ)−(s+1) dβ dα

and then, by the reproducing formula (3.29) for Ds-functions (valid on C+ ∪ {0}), we
obtain

χ(fD(A)) = f(λ) ∈ f(σ(A)).

Hence, σ(fD(A))∪ {0} ⊂ f(σ(A))∪ {0}. To prove the opposite inclusion, note that if

λ ∈ σ(A) is fixed, then there is a character χ such that χ((z+A)−1) = (z+λ)−1, so the
above argument can be reversed, yielding χ(fD(A)) = f(λ), thus finishing the proof.

Next, using the same approach via Banach algebras, we prove the analogous spectral

result for the H-calculus.

Theorem 9.4. Let A ∈ Sect(θ) and f ∈Hψ for some θ < ψ < π, and let λ ∈ C.

1. If x ∈D(A) and Ax= λx, then fH(A)x= f(λ)x.

2. If x∗ ∈D(A∗) and A∗x∗ = λx∗, then fH(A)∗x∗ = f(λ)x∗.

3. If (xn)n≥1 are unit vectors in D(A) and limn→∞ ‖Axn − λxn‖ = 0, then

limn→∞ ‖fH(A)xn−f(λ)xn‖= 0.

4. One has σ(fH(A))∪{f(∞)}= f(σ(A))∪{f(∞)}.

Proof. The proofs of (1) and (2) are straightforward consequences of the reproducing
formula (4.34). Moreover, (3) is deduced from (1) in the same way as in Theorem 9.3.

The proof of (4) is similar to the corresponding proof in Theorem 9.3, based on the

formula (8.1), which converges in the uniform operator topology. Let γ = π/(2ψ). By the
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spectral mapping theorem for the holomorphic functional calculus [35, Theorem 2.7.8] or

[44, Theorem 5.3.1], one has

σ((Aγ + t− iβ)−1) = {(λγ + t− iβ)−1 : λ ∈ σ(A)}∪{0}, t > 0, β ∈ R. (9.4)

As in the proof of Theorem 9.3, let A be the bicommutant of {(z+A)−1 : −z ∈ ρ(A)}
in L(X). Then fH(A) ∈ A and the spectrum of fH(A) in A coincides with the spectrum

in L(X). Let χ be any character of A, and let f ∈ Hψ be such that f(∞) = 0. If χ((1+

Aγ)−1) = 0, then, as above, χ((z+Aγ)−1) = 0 for all z ∈C+; hence, χ(fH(A)) = 0= f(∞).
Otherwise, χ((z+Aγ)−1) = (λγ + z)−1 for some λ ∈ σ(A) and all z ∈ C+. Applying χ to

(8.1) and using the representation (4.34) for Hψ-functions, one gets

χ(fH(A)) =− 1

π

∫ ∞

0

∫ ∞

−∞
f ′
1/γ(t+ iβ)(λγ + t− iβ)−1 dβ dt= f(λ).

Hence, σ(fH(A))∪{0} ⊂ f(σ(A))∪{0}.
On the other hand, if λ ∈ σ(A), then by (9.4) there is a character χ such that χ((z+

Aγ)−1) = (z+λγ)−1. So using (4.34) again, we infer that f(λ) ∈ σ(fH(A)).

Combining the two paragraphs above yields (4).

Our spectral mapping theorems differ from known spectral mapping theorems for the

holomorphic functional calculus (see [34] or [35, Section 2.7]) in at least three respects. We
do not assume that A is injective, we cover a wider class of functions including some with

a mild singularity at zero (for example, e−1/z) and our proofs are completely different.

10. Some applications to norm estimates

In this section we directly apply the D and H-calculi that we have constructed to obtain

some operator norm estimates. In particular, we obtain uniform bounds on the powers
of Cayley transforms and on the semigroup generated by the inverse of a semigroup

generator. We then compare the results to known estimates in the literature. We also

revisit the theory of holomorphic C0-semigroups and obtain several basic estimates along
with some slight generalisations.

10.1. Norm estimates via the D-calculus

Let A ∈ Sect(π/2−) and V (A) be the Cayley transform (A− I)(A+ I)−1 of A. We now

review several important estimates from the literature in the framework of the constructed

D and H-calculi.
Recall that −A is the generator of a bounded holomorphic semigroup (e−tA)t≥0. Let

et(z) = e−tz, t≥ 0, z ∈ C+. Then et ∈ LM⊂D∞ and

e−tA = (et)HP(A) = (et)D(A).

Corollary 10.1. Let A ∈ Sect(π/2−), so that (7.2) holds.

(i) One has

‖V (A)n‖ ≤ 1+32(1+(
√
2π)−1)M2

A, n ∈ N.
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(ii) One has

‖e−tA‖ ≤ 2M2
A, t≥ 0.

(iii) For every ν > 0, one has

‖Aνe−tA‖ ≤ 2ν+2t−νΓ(ν+1)M
	ν
+2
A , t > 0.

If, in addition, the inverse A−1 exists and is densely defined, then A−1 generates a bounded
holomorphic C0-semigroup (e−tA−1

)t≥0 satisfying

‖e−tA−1‖ ≤ 1+2M2
A, t≥ 0,

and, for every ν > 0,

‖A−νe−tA−1‖ ≤ 2ν+2t−νΓ(ν+1)M
	ν
+2
A , t > 0.

Proof. By Lemma 12.1 and Theorem 7.6, for every s > 0,

‖V (A)n‖ ≤ 1+2s+4π−1(B(s/2,1/2)+2−s/2)M
	s
+1
A , n ∈ N.

Setting s= 1 we get assertion (i).

By Proposition 3.15 or by Example 3.4 and Lemma 3.17(iii), the function e−tz ∈Ds for
s > 0 and t > 0, and by (3.21) and Theorem 7.6,

‖e−tA‖ ≤ 2sπ−1B(s/2,1/2)M
	s
+1
A , t≥ 0.

So the estimate (ii) follows by setting s= 1 above.

If fν(z) := zνe−tz, ν > 0, then fν ∈ Ds if and only if s > ν, and in that case ‖fν‖Ds
=

2t−νB((s− ν)/2,1/2)Γ(ν+1) (see Example 3.4). Because fν has zero polynomial limits

at zero and at infinity, (fν)D(A) coincides with Aνe−tA as defined by the holomorphic

functional calculus (see Remark 7.5). Using (3.21), it follows that, for every s > ν,

‖Aνe−tA‖ ≤ 2s+1t−ν

π
B

(
s−ν

2
,
1

2

)
Γ(ν+1)M

	s
+1
A .

Setting s = ν + 1, the first assertion in (iii) follows. The other two estimates are

consequences of Lemma 3.17(i) and the estimates for e−tA and Aνe−tA obtained
above.

The results in Corollary 10.1 are not new, and it serves as an ilustration of the utility

of the D-calculus. We have not aimed at finding the best possible estimates, but it seems
that the H-calculus provides bounds that are fairly precise whenever it is applicable. The

power-boundedness of V (A) was shown in [15] and [46], using different methods. In [7,

Corollary 5.9], a weaker result was shown using the B-calculus (so all operators satisfying
(1.3)). Corollary 10.1 shows how the D and H-calculi can give a sharper estimate than

the B-calculus in the case of sectorial operators. Part (ii) above is one of many estimates

for the bound on a bounded holomorphic semigroup in terms of its sectorial bound, and
it is clearly not sharp. A careful estimation in [7, Lemma 4.7] of the bound obtained via

the B-calculus gave a bound of order MA logMA when MA is large. See also [51, Theorem

5.2] where the result was established for the first time. Estimates of the form given in
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part (iii) have been known for a long time but usually without showing the dependence

on MA.

Next we consider estimates similar to Corollary 10.1(iii). In Lemma 10.2 and Theorem
10.3 f(A) refers to the D-calculus.

Lemma 10.2. Let A ∈ Sect(π/2−). If f ∈ Ds, s >−1, and n ∈ N, then

(znf (n))(A) = Cs,n

∫ ∞

0

αs

∫ ∞

−∞
f ′(α+ iβ)An(A+α− iβ)−(s+n+1) dβ dα, (10.1)

where

Cs,n = (−1)
n+1 2

s

π

Γ(s+n+1)

Γ(s+1)
.

Proof. By Corollary 5.5 and the boundedness of the Ds+n-calculus, (z
nf (n))(A) coincides

with the derivative of order n of the function t 
→ f(tA) evaluated at t= 1. The formula

(7.5) for f(tA) ∈ Ds can be differentiated repeatedly with respect to t by a standard

method, and putting t= 1 then gives the formula (10.1).

Theorem 10.3. Let A∈ Sect(π/2−) and n∈N. Let f ∈D∞, and assume that f (k) ∈D∞
for k = 1, . . . ,n. Then

(znf (n))(A) =Anf (n)(A). (10.2)

Moreover, if f ∈ Ds, s >−1, then

‖tnAnf (n)(tA)‖ ≤ 2sΓ(s+n+1)

πΓ(s+1)
(MA+1)nM

	s
+1
A ‖f‖Ds

, t > 0. (10.3)

In particular, for f(z) = e−z ∈ D1,

‖tnAne−tA‖ ≤ 2π−1(n+1)!(MA+1)nM2
A, t > 0, n ∈ N. (10.4)

Proof. We will prove, by induction on n, that (10.2) holds for all functions f ∈D∞ such
that f (k) ∈D∞ for k=1, . . . ,n. First, assume that f,f ′ ∈D∞. Then zf ′ ∈D∞ by Corollary

3.23, and

(1+A)−1(zf ′)(A)+(1+A)−1f ′(A) = f ′(A).

This implies that (zf ′)(A) =Af ′(A).
Now assume that, for some n ≥ 1, (zkg(k))(A) = Akg(k)(A) for k = 1, . . . ,n, for all

functions g such that g(k) ∈ D∞ for k = 0, . . . ,n. Let f (k) ∈ D∞ for k = 0,1, . . . ,n+1.

Applying the base case (n= 1) to the function znf (n) (noting that this function and its

first derivative are in D∞, by Corollary 3.23), we obtain

(z(znf (n))′)(A) =A(znf (n))′(A).

Then applying the inductive hypothesis with k = n to the function f and with k = n−1

and k = n to the function f ′, we obtain

(zn+1f (n+1))(A) =A
(
n(zn−1f (n))+(znf (n+1))

)
(A)−n(znf (n))(A)

=An+1f (n+1)(A).
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This completes the proof of the inductive hypothesis for all n∈N and hence proves (10.2)

Because MA =MtA for all t > 0, it suffices to prove (10.3) for t= 1. From Lemmas 7.1

and 10.2, we obtain

‖An f (n)(A)‖

≤ 2sΓ(s+n+1)

πΓ(s+1)
(MA+1)nM

	s
+1
A

∫ ∞

0

αs

∫ ∞

−∞

|f ′(α+ iβ)|
|α− iβ|s+1

dβ dα

=
2sΓ(s+n+1)

πΓ(s+1)
(MA+1)nM

	s
+1
A ‖f‖Ds

.

Remark 10.4. In Theorem 10.3, the assumption that f ∈ D∞ and f (k) ∈ D∞,k =

1,2, . . . ,n, can be replaced by the assumption that f ∈ D∞ and f (n) ∈ D∞, by using a

result of Lyubich [43]. See Corollary 11.3.

10.2. Norm estimates via the H-calculus

Now we use theH-calculus to provide a new proof that holomorphy of operator semigroups

generated by −A is preserved for subordinate semigroups generated by −g(A) where g is

a Bernstein function. This was proved for the first time in [31].
If −A is the generator of a bounded C0-semigroup (e−tA)t≥0 on a Banach space X and

g is a Bernstein function given by (3.30), then the operator

g0(A)x := ax+ bAx+

∫
(0,∞)

(
x− e−tAx

)
dμ(t), x ∈D(A), (10.5)

is closable, and g(A) can be defined as the closure of g0(A). Thus, D(A) is a core for
g(A), and one can prove that −g(A) generates a contraction C0-semigroup on X. Several

equivalent definitions of g(A) are possible, and we refer the reader to [50], [30] and [31].

If A is injective, then g(A) is well-defined within the (extended) holomorphic functional
calculus and is given by (10.5) as above; see Proposition 8.1 and [31, Propositions 3.3

and 3.6].

The next statement shows that the so-called semigroup subordination preserves the

holomorphy of C0-semigroups along with the holomorphy angles. It was one of the main
results of [31], settling a question raised by Kishimoto and Robinson [39]. See also [6] and

[7] for generalisations and other proofs.

Theorem 10.5. Let A ∈ Sect(θ), where θ ∈ [0,π/2), and let g be a Bernstein function

as in (3.30). Then g(A) ∈ Sect(θ). More precisely, for all ψ ∈ (θ,π/2), ϕ ∈ (ψ,π) and

λ ∈ Σπ−ϕ,

‖λ(λ+g(A))−1‖ ≤ 2Mψ(A)

(
1

sin(min(ϕ,π/2))
+

2

cosψ sin2((ϕ−ψ)/2)

)
. (10.6)

Proof. Let ψ ∈ (θ,π/2), ϕ ∈ (ψ,π) and λ ∈ Σπ−ϕ. If

f(z) = f(z;λ) := (λ+g(z))−1, z ∈ Σψ,
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then by Corollary 4.16 we have f ∈Hψ. We will show that fH(A) = (λ+g(A))−1. It then

follows from (8.9) and (4.31) that (10.6) holds. Because the choice of ψ ∈ (θ,π/2) and
ϕ ∈ (ψ,π) is arbitrary, this shows that the operator g(A) is sectorial of angle θ.

If A is injective, then f(A) and λ+ g(A) are consistently defined in the holomorphic

functional calculus, and therefore fH(A) = f(A) = (λ + g(A))−1 (see [35, Theorem

1.3.2f)]).
When A is not injective, we follow the approach proposed in the proof of [6, Theorem

4.8].

Because A+ ε is invertible, we have

(λ+g(A+ ε))−1 = fH(A+ ε).

By Proposition 8.1(v),

lim
ε→0+

‖fH(A+ ε)−fH(A)‖= 0. (10.7)

Let x∈D(A). Because fH(A+ε) commutes with (1+A)−1, we have fH(A+ε)x∈D(A),

and by (10.5),

x− (λ+g(A))fH(A+ ε)x= [g(A+ ε)−g(A)]fH(A+ ε)x

= εbfH(A+ ε)x−
∫
(0,∞)

(1− e−εt)e−tAfH(A+ ε)xdμ(t).

It follows from (10.7) that

Cλ := sup
ε∈(0,1]

‖fH(A+ ε)‖<∞,

and hence

‖x− (λ+g(A))fH(A+ ε)x‖ ≤ εbCλ‖x‖+CλKA

∫
(0,∞)

(1− e−εt)dμ(t)‖x‖ (10.9)

→ 0, ε→ 0,

where KA := supt>0 ‖e−tA‖. Because λ+g(A) is closed, it follows firstly that

(λ+g(A))fH(A)x= x, x ∈D(A).

Because D(A) is dense in X and fH(A) is bounded, it follows secondly that

(λ+g(A))fH(A)x= x, x ∈X.

Because λ+g(A) and fH(A) commute on D(A),

fH(A)(λ+g(A))x= x, x ∈D(A).

Because D(A) is a core for g(A), it follows that this holds for all x ∈ D(g(A)). Thus,

fH(A) = (λ+g(A))−1, as required.

Remarks 10.6. 1. A new feature of Theorem 10.5 is an explicit sectoriality constant for

g(A), given by the right-hand side of (10.6). This could be valuable when applying the
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result to families of sectorial operators. Thus, (10.6) offers an improvement over similar

estimates in [6], [7] and [31], where the sectoriality constants for g(A) are rather implicit.

2. We take this opportunity to correct a parsing misprint in the proof [6, Theorem 4.9].
One should replace f(A) with f(A)+z in the third and fourth displays in [6, p.932] (see

(10.8) and (10.9) for similar formulas).

Finally, as an illustration, we show how the holomorphy of C0-semigroups generated by
operators −Aγ fits within the H-calculus and how estimates of type similar to Corollary

10.1(ii) can be obtained from the representation of theH-calculus and the function arccot,

as in Theorem 8.6. The following result is similar to [12, Corollary 5.2] and a generalisation

of the main result in [17] to noninteger γ. See also [15, Remark 2, p.83].

Corollary 10.7. Let A ∈ Sect(θ), θ ∈ (0,π) and γ ∈ (0,π/(2θ)). Then (e−tAγ

)t≥0 is a

bounded holomorphic C0-semigroup of angle (π/2)−γθ. More precisely, if ψ ∈ (θ,π/(2γ))

and λ= |λ|eiϕ ∈ Σ(π/2)−γψ, then

‖e−λAγ‖ ≤ 1

2

(
1

cos(γψ+ϕ)
+

1

cos(γψ−ϕ)

)
Mγψ(A). (10.10)

Proof. Let ψ ∈ (θ,π). Because the H-calculus ΥA is a homomorphism and ΥA(e
−λzγ

) =

e−λAγ

for every λ ∈ Σ(π/2)−γψ, the family (e−λAγ

)λ∈Σ(π/2)−γψ
is an operator semigroup.

By Theorem 4.8 and the argument in Section 2, the map λ 
→ e−λzγ

is holomorphic from

Σ(π/2)−γψ to Hψ, so λ 
→ e−λAγ

is also holomorphic. The estimate (10.10) follows from
Example 4.10(2) and (8.10), and it shows boundedness of the semigroup on each relevant

sector.

Note that, for γ = 1, Corollary 10.7 provides a sharper bound than Corollary 10.1(ii).

11. Appendix: Shifts on Ds and Hψ

The shift semigroups on the space B had an important role in the study of the B-calculus
in [7] and [8]. Though the semigroups are not essential in this article, we think they will

be important for further research, so we describe their properties on the spaces Ds and
Hψ. In this appendix we prove that the shifts (T (τ))τ∈C+

given by

(T (τ)f)(z) := f(z+ τ), z ∈ C+, τ ∈ C+,

form a holomorphic C0-semigroup on Ds for each s > −1. We also show that a similar

statement holds for shifts on Hψ for each ψ ∈ (0,π).

We consider first the space Ds, and we begin by proving that the semigroup (T (τ))τ∈Σψ

of operators is uniformly bounded on Ds, for each s >−1 and ψ ∈ (0,π/2).

Theorem 11.1. Let s >−1, ψ ∈ (0,π/2) and a= tanψ. For all τ ∈ Σψ, we have

‖T (τ)f‖Ds
≤ Ca,s‖f‖Ds

, f ∈ Ds, (11.1)

where

Ca,s :=
(s+1)2sB((s+1)/2,1/2)

π cosψ coss+2(ψ/2+π/4)
+2s+1.
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Proof. Let τ ∈ Σψ and f ∈ Ds. We have

‖T (τ)f‖Ds
≤ |f(∞)|+

∫
C+

(Rez)s

|z|s+1
|f ′(z+ τ)|dS(z) = |f(∞)|+J(τ),

where dS denotes area measure on C+ and

J(τ) :=

∫
Rez≥Reτ

(Rez−Reτ)s

|z− τ |s+1
|f ′(z)|dS(z).

Let

W (τ) := {z ∈ C : Rez ≥ Reτ, |z− τ | ≤ |τ |},
W0(τ) :=W (τ)− τ = {z ∈ C+ : |z| ≤ |τ |} .

If Rez ≥ Reτ and z /∈W (τ), then |z| ≤ |z− τ |+ |τ | ≤ 2|z− τ |. Hence,

J(τ)≤
∫
W (τ)

(Rez−Reτ)s

|z− τ |s+1
|f ′(z)|dS(z) (11.2)

+2s+1

∫
Rez≥Reτ

(Rez)s

|z|s+1
|f ′(z)|dS(z)

≤ max
z∈W (τ)

|f ′(z)|
∫
W0(τ)

(Rez)s

|z|s+1
dS(z)+2s+1‖f ′‖Vs

.

Moreover,∫
W0(τ)

(Rez)s

|z|s+1
dS(z) =

∫ π/2

−π/2

∫ |τ |

0

cossϕdρdϕ= |τ |B((s+1)/2,1/2). (11.3)

For z ∈W (τ), we also have Rez ≥ Reτ and

| Imz| ≤ | Imτ |+ |τ | ≤
(
a+

√
1+a2

)
Reτ.

Hence, if ψa := arctan
(
a+

√
1+a2

)
and z ∈ Σψa

and |z| ≥ Reτ , so by Corollary 3.13,

max
z∈W (τ)

|f ′(z)| ≤ max
z∈Σψa, |z|≥Reτ

|f ′(z)| ≤ (s+1)2s

πReτ coss+2ψa
‖f ′‖Vs

. (11.4)

Inserting the estimates (11.3) and (11.4) into (11.2) and using |τ | ≤Reτ/cosψ, we obtain

J(τ)≤
(
(s+1)2sB((s+1)/2,2)

π cosψ coss+2ψa
+2s+1

)
‖f ′‖Vs

.

Noting that

arctan
(
a+

√
1+a2

)
= arctan

(
1+sinψ

cosψ

)
=

ψ

2
+

π

4
,

the estimate (11.1) follows.
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Corollary 11.2. For any s >−1, the family T := (T (τ))τ∈C+
is a bounded holomorphic

C0-semigroup on Ds of angle π/2. The generator of the semigroup is −ADs
, where

D(ADs
) = {f ∈ Ds : f

′ ∈ Ds}, ADs
f =−f ′.

Proof. By Theorem 11.1, T is bounded on Σψ for each ψ ∈ (0,π/2), and as noted in
Remark 3.14, the function λ 
→ rλ is a holomorphic function from C+ to Ds, so τ 
→ T (τ)rλ
is holomorphic. Because R̃(C+) is dense in Ds (Theorem 5.1), it follows that T is strongly

continuous on Σψ ∪{0} and, moreover, for f ∈ Ds, the map τ 
→ T (τ)f is holomorphic
on C+.

The proof of the statement about the generator is almost identical to the proof for the

space B in [7, Lemma 2.6].

The following corollary justifies Remark 10.4 about the assumptions in Theorem 10.3.

Corollary 11.3. Let f ∈ Ds, s > −1, and assume that f (n) ∈ Ds for some n ∈ N. Then

f (k) ∈ Ds for k = 1,2, . . . ,n−1.

Proof. Consider the operator Ag =−g′ on Hol(C+) and its part ADs
in the subspace Ds.

The operators ADs
+m,m= 1,2, . . . ,n, are surjective on Ds, and g = 0 is the only solution

in Ds to
∏n

m=1(A+m)g = 0. The statement follows from [43, Theorem 1].

Remark 11.4. The space B is invariant under vertical shifts: f(z) 
→ f(z+ iσ) for σ ∈R.
However, the spaces Ds and D∞

s are not invariant under vertical shifts. See Example 3.19.

Now we will show that the family of shifts T also forms a bounded holomorphic C0-
semigroup on Hψ for every ψ ∈ (0,π). If ψ > π/2, then T (τ) are defined for τ ∈Σπ−ψ. For

this aim, we will recall the Gabriel inequality for holomorphic functions.

Let Ω be a bounded convex domain in C and let Γ ⊂ Ω be a convex curve. Then

there exists a universal constant K > 0 (not depending on f,Ω and Γ) such that, for all
f ∈Hol(Ω)∩C(Ω), ∫

Γ

|f(z)| |dz| ≤K

∫
∂Ω

|f(z)| |dz|. (11.5)

Clearly, K ≥ 1. Moreover, it can be shown that if Γ is closed, then 2<K < 3.7 (see [11,
p.457], for example). The inequality was conjectured by J. Littlewood and first proved

by Gabriel in [24, Theorem I]. It is thoroughly discussed in [11, Selected Seminars, 2, 4

and 5] and [32, Section 5], providing simpler proofs, more general versions and additional

insights.

Theorem 11.5. Let ψ ∈ (0,π) and ψ0 = min{ψ,π−ψ}. The family T = (T (τ))τ∈Σψ0

is a bounded holomorphic C0-semigroup of angle ψ0 on each of the spaces Hψ. The

generator −AHψ
of T on Hψ is given by

D(AHψ
) = {f ∈Hψ : f ′ ∈Hψ}, AHψ

f =−f ′.

Proof. We will show first that the family of shifts T is uniformly bounded on Hψ for

every ψ ∈ (0,π). Then the result follows quickly by a density argument.
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Let g ∈ Hψ so that for f = g′ one has f ∈ H1(Σψ). Assume first that ψ ∈ (0,π/2],

and let ψ′ ∈ (0,ψ) and α := sin(ψ−ψ′). By the mean value inequality, for any r > 0 and
ϕ ∈ (−ψ′,ψ′) we have

r|f(reiϕ)| ≤ 1

πα2r

∫
|z−reiϕ|≤αr

|f(z)|dS(z) (11.6)

≤ 2(1+α)

πα2

∫ ψ′

−ψ′

∫ (1+α)r

(1−α)r

|f(ρeiϕ)|dρdϕ

→ 0,

as r→ 0 or r→∞, by the dominated convergence theorem.

Now let τ ∈ Σψ and ϕ ∈ (0,ψ). Let

Γτ,ϕ = {τ + teiϕ : t≥ 0}∪{τ + te−iϕ : t≥ 0}. (11.7)

Let ψ >ψ′ >max(|argτ |,ϕ), and take r ∈ (0,1) such that 0< r < |τ |< 1/r. We now apply

Gabriel’s inequality (11.5) with

Ωr := {z ∈ C : Rez > r cosψ′,|z|< 1/r,|argz|< ψ′}

and

Γτ,ϕ,r := {z ∈ Γτ,ϕ : |z| ≤ 1/r}∪{z ∈ C : |z|= 1/r, |arg(z− τ)| ≤ ϕ}.

We obtain

K−1

∫
Γτ,ϕ,r

|f(z)| |dz| ≤
∫
∂Ωr

|f(z)| |dz|

≤
∫ 1/r

r

|f(ρeiψ′
)|dρ+

∫ 1/r

r

|f(ρe−iψ′
)|dρ+2πr−1 sup

ϕ∈(−ψ′,ψ′)
|f(eiϕ/r)|

+2r sinψ′ sup
ϕ∈(−ψ′,ψ′)

∣∣∣∣f(r cosψ′

cosϕ
eiϕ

)∣∣∣∣,
where K > 0 is given by (11.5).
By (11.6), the last two terms converge to zero as r→ 0. From Theorem 4.6(iv) it follows

that

K−1

∫
Γτ,ϕ

|f(z)| |dz| ≤ ‖f‖H1(Σψ′ ) ≤ ‖f‖H1(Σψ).

Thus, because the choice of ϕ ∈ (0,ψ) was arbitrary, we have

‖T (τ)f‖H1(Σψ) ≤K‖f‖H1(Σψ). (11.8)

Now we consider the case when ψ ∈ (π/2,π) and τ ∈ Σπ−ψ. For ϕ ∈ (0,ψ) let the path

Γτ,ϕ be given by (11.7) and Γ±
τ,ϕ := {τ + te±iϕ : t ≥ 0}. Define the half-planes C

ψ
+ :=

−ieiψΣπ/2 and C
ψ
− := ie−iψΣπ/2 so that Γ±

τ,ϕ ⊂ C
ψ
±. Letting f̃(z) := f(−ieiψz),z ∈ Σπ/2,

and applying (11.8) with ψ = π/2, f̃ ∈ H1(Σπ/2) in place of f and τ̃ = ie−iψτ in place
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of τ, we obtain that

K

∫
eiψR

|f(z)| |dz|=K‖f̃‖H1(Σπ/2) ≥ ‖T (τ̃)f̃‖H1(Σπ/2) ≥
∫
Γ+
τ,ϕ

|f(z)| |dz|.

Similarly,

K

∫
e−iψR

|f(z)| |dz| ≥
∫
Γ−
τ,ϕ

|f(z)| |dz|.

Thus, taking into account Theorem 4.6(iv), we infer that

2K‖f‖H1(Σψ) ≥K

(∫
eiψR

|f(z)| |dz|+
∫
e−iψR

|f(z)| |dz|
)
≥
∫
Γτ,ϕ

|f(z)| |dz|.

Because, as above, the choice of ϕ ∈ (0,ψ) is arbitrary, we then have

‖T (τ)f‖H1(Σψ) ≤ 2K‖f‖H1(Σψ)

if ψ ∈ (π/2,π), and then if ψ ∈ (0,π) in view of (11.8).

Hence, for all τ ∈ Σψ,

‖T (τ)g‖Hψ
≤max(1,2K)‖g‖Hψ

≤ 2K‖g‖Hψ
. (11.9)

A direct verification shows that ‖T (τ)rλ − rλ‖Hψ
→ 0,τ → 0, for every λ ∈ C \Σψ. It

now follows from (11.9) and Theorem 5.10 that (T (τ))τ∈Σψ0
is a bounded C0-semigroup

on Hψ,0 and then on Hψ. The holomorphy of (T (τ))τ∈Σψ0
on Hψ follows from Theorem

4.8(iii) and the method discussed in Section 2.
The claim about the generator −AHψ

can be justified along the lines of the proof of a

similar fact for the space B in [7, Lemma 2.6].

Remark 11.6. Following a more conventional approach, one may try to prove Theorem

11.5 by reducing the estimates to the half-plane case and applying Carleson’s embedding

theorem for H1(C+). However, the technical details become rather cumbersome, so we
prefer to use Gabriel’s inequality allowing for a more transparent argument.

12. Appendix: The D-calculus vs the HP and the B-calculi

It is natural to compare the strength of the D-calculus with some other functional calculi,

such as the recently constructed B-calculus and the well-known HP-calculus. To show the
advantages of our D-calculus with respect to the B-calculus and the HP-calculus, as an

illustrative example, we consider the family of functions {fn : n≥ 1} given by

fn(z) =

(
z−1

z+1

)n

, z ∈ C+, n ∈ N.

This family is contained in LM (see [8, Section 6]), and it arises naturally in the study

of asymptotics for powers of Cayley transforms of semigroup generators. It is shown in

[7, Lemma 3.7] and [8, Lemmas 5.1 and 5.2] that

‖fn‖B � logn and ‖fn‖HP � n1/2, n→∞.
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We will show that the D-calculus provides sharper estimates for the corresponding
operator functions. To this aim we need the next lemma.

Lemma 12.1. For s > 0,

‖fn‖Ds
≤ 1+16

(
B(s/2,1/2)+2−s/2

)
, n ∈ N.

Proof. Let s > 0 and n ∈ N be fixed. We have

fn(∞) = 1, f ′
n(z) = 2n

(z−1)n−1

(z+1)n+1
,

and then

‖fn‖Ds
= 1+8n

∫ π/2

0

cossψ

∫ ∞

1

gn(ρ,ψ)dρ

ρ2+2ρcosψ+1
dψ = 1+8nJn,

where

gn(ρ,ψ) =

(
ρ2−2ρcosψ+1

ρ2+2ρcosψ+1

)(n−1)/2

.

Let Jn = J1,n+J2,n+J3,n, where

J1,n =

∫ π/2

0

cossψ

∫ ∞

2

gn(ρ,ψ)dρ

ρ2+2ρcosψ+1
dψ,

J2,n =

∫ π/2

π/4

cossψ

∫ 2

1

gn(ρ,ψ)dρ

ρ2+2ρcosψ+1
dψ,

J3,n =

∫ π/4

0

cossψ

∫ 2

1

gn(ρ,ψ)dρ

ρ2+2ρcosψ+1
dψ.

We estimate each of the summands J1,n, J2,n and J3,n separately. First,

∂

∂ρ
gn+2(ρ,ψ) = 2(n+1)

(ρ2−1)cosψ

(ρ2+2ρcosψ+1)2
gn(ρ,ψ)

≥ 2(n+1)

3

cosψgn(ρ,ψ)

(ρ2+2ρcosψ+1)
> 0, ρ > 2.

Hence,

J1,n ≤ 3

2(n+1)

∫ π/2

0

coss−1ψ

∫ ∞

2

∂

∂ρ
gn+2(ρ,ψ)dρdψ

≤ 3

2(n+1)

∫ π/2

0

coss−1ψdψ <
B(s/2,1/2)

n
.

Next, for all ρ ∈ (1,2) and ψ ∈ (π/4,π/2),

∂

∂ψ
gn+2(ρ,ψ) = 2(n+1)

ρ(ρ2+1)sinψ

(ρ2+2ρcosψ+1)2
gn(ρ,ψ)

≥ (n+1)

2

gn(ρ,ψ)

(ρ2+2ρcosψ+1)
> 0,
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so

J2,n ≤ 2

(n+1)

∫ 2

1

∫ π/2

π/4

cossψ
∂

∂ρ
gn+2(ρ,ψ)dψdρ

≤− 2

(n+1)

∫ π/2

π/4

(cossψ)′ dψ =
2

2s/2(n+1)
.

Finally, because

sup
ρ∈(1,2), ψ∈(0,π/4)

gn(ρ,ψ) = gn(2,π/4) =

(
5−2

√
2

5+2
√
2

)(n−1)/2

<
2

n
,

we have

J3,n ≤ 2

n

∫ π/4

0

cossψdψ <
B(s/2,1/2)

n
.

Summing up the above estimates above, the assertion of the lemma follows.

The following corollary showing sharpness of the D-calculus is immediate.

Corollary 12.2. For any s > 0,

‖fn‖B
‖fn‖Ds

� logn,
‖fn‖HP

‖fn‖Ds

� n1/2, n→∞.

Remark 12.3. Curiously, for s = 0 the asymptotics of ‖fn‖D0
match those of ‖fn‖B,

and one does not get any advantage using the D-calculus in this case. Specifically, one

can show that, for n ∈ N,

1+2log(n+1)≤ ‖fn‖D0
≤ 8(4+ log(n+1)). (12.1)
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