We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
$\mathbb{Z}^{d}$-extensions of probability-preserving dynamical systems are themselves dynamical systems preserving an infinite measure, and generalize random walks. Using the method of moments, we prove a generalized central limit theorem for additive functionals of the extension of integral zero, under spectral assumptions. As a corollary, we get the fact that Green–Kubo’s formula is invariant under induction. This allows us to relate the hitting probability of sites with the symmetrized potential kernel, giving an alternative proof and generalizing a theorem of Spitzer. Finally, this relation is used to improve, in turn, the assumptions of the generalized central limit theorem. Applications to Lorentz gases in finite horizon and to the geodesic flow on Abelian covers of compact manifolds of negative curvature are discussed.
In the first part of the paper, we introduce notions of asymptotic continuous orbit equivalence and asymptotic conjugacy in Smale spaces and characterize them in terms of their asymptotic Ruelle algebras with their dual actions. In the second part, we introduce a groupoid $C^{\ast }$-algebra that is an extended version of the asymptotic Ruelle algebra from a Smale space and study the extended Ruelle algebras from the view points of Cuntz–Krieger algebras. As a result, the asymptotic Ruelle algebra is realized as a fixed point algebra of the extended Ruelle algebra under certain circle action.
We study a rich family of robustly non-hyperbolic transitive diffeomorphisms and we show that each ergodic measure is approached by hyperbolic sets in weak$\ast$-topology and in entropy. For hyperbolic ergodic measures, it is a classical result of A. Katok. The novelty here is to deal with non-hyperbolic ergodic measures. As a consequence, we obtain the continuity of topological entropy.
We generalize the higher rank rigidity theorem to a class of Finsler spaces, i.e. Berwald spaces. More precisely, we prove that a complete connected Berwald space of finite volume and bounded non-positive flag curvature with rank at least two whose universal cover is irreducible is a locally symmetric space or a locally Minkowski space.
In this paper, we study an interesting curve, the so-called Manhattan curve, associated with a pair of boundary-preserving Fuchsian representations of a (non-compact) surface; in particular, representations corresponding to Riemann surfaces with cusps. Using thermodynamic formalism (for countable state Markov shifts), we prove the analyticity of the Manhattan curve. Moreover, we derive several dynamical and geometric rigidity results, which generalize results of Burger [Intersection, the Manhattan curve, and Patterson–Sullivan theory in rank 2. Int. Math. Res. Not.1993(7) (1993), 217–225] and Sharp [The Manhattan curve and the correlation of length spectra on hyperbolic surfaces. Math. Z.228(4) (1998), 745–750] for convex cocompact Fuchsian representations.
We prove the existence of a discrete correlation spectrum for Morse–Smale flows acting on smooth forms on a compact manifold. This is done by constructing spaces of currents with anisotropic Sobolev regularity on which the Lie derivative has a discrete spectrum.
A classic result due to Furstenberg is the strict ergodicity of the horocycle flow for a compact hyperbolic surface. Strict ergodicity is unique ergodicity with respect to a measure of full support, and therefore it implies minimality. The horocycle flow has been previously studied on minimal foliations by hyperbolic surfaces on closed manifolds, where it is known not to be minimal in general. In this paper, we prove that for the special case of Riemannian foliations, strict ergodicity of the horocycle flow still holds. This, in particular, proves that this flow is minimal, which establishes a conjecture proposed by Matsumoto. The main tool is a theorem due to Coudène, which he presented as an alternative proof for the surface case. It applies to two continuous flows defining a measure-preserving action of the affine group of the line on a compact metric space, precisely matching the foliated setting. In addition, we briefly discuss the application of Coudène’s theorem to other kinds of foliations.
For a class of competitive maps there is an invariant one-codimensional manifold (the carrying simplex) attracting all non-trivial orbits. In this paper it is shown that its convexity implies that it is a $C^{1}$ submanifold-with-corners, neatly embedded in the non-negative orthant. The proof uses the characterization of neat embedding in terms of inequalities between Lyapunov exponents for ergodic invariant measures supported on the boundary of the carrying simplex.
We contribute to the thermodynamic formalism of partially hyperbolic attractors for local diffeomorphisms admitting an invariant stable bundle and a positively invariant cone field with non-uniform cone expansion at a positive Lebesgue measure set of points. These include the case of attractors for Axiom A endomorphisms and partially hyperbolic endomorphisms derived from Anosov. We prove these attractors have finitely many SRB measures, that these are hyperbolic, and that the SRB measure is unique provided the dynamics is transitive. Moreover, we show that the SRB measures are statistically stable (in the weak$^{\ast }$ topology) and that their entropy varies continuously with respect to the local diffeomorphism.
A Riemannian manifold $M$ has higher hyperbolic rank if every geodesic has a perpendicular Jacobi field making sectional curvature $-1$ with the geodesic. If, in addition, the sectional curvatures of $M$ lie in the interval $[-1,-\frac{1}{4}]$ and $M$ is closed, we show that $M$ is a locally symmetric space of rank one. This partially extends work by Constantine using completely different methods. It is also a partial counterpart to Hamenstädt’s hyperbolic rank rigidity result for sectional curvatures $\leq -1$, and complements well-known results on Euclidean and spherical rank rigidity.
We prove the stable ergodicity of an example of a volume-preserving, partially hyperbolic diffeomorphism introduced by Berger and Carrasco in [Berger and Carrasco. Non-uniformly hyperbolic diffeomorphisms derived from the standard map. Comm. Math. Phys.329 (2014), 239–262]. This example is robustly non-uniformly hyperbolic, with a two-dimensional center; almost every point has both positive and negative Lyapunov exponents along the center direction and does not admit a dominated splitting of the center direction. The main novelty of our proof is that we do not use accessibility.
Let $g:M\rightarrow M$ be a $C^{1+\unicode[STIX]{x1D6FC}}$-partially hyperbolic diffeomorphism preserving an ergodic normalized volume on $M$. We show that, if $f:M\rightarrow M$ is a $C^{1+\unicode[STIX]{x1D6FC}}$-Anosov diffeomorphism such that the stable subspaces of $f$ and $g$ span the whole tangent space at some point on $M$, the set of points that equidistribute under $g$ but have non-dense orbits under $f$ has full Hausdorff dimension. The same result is also obtained when $M$ is the torus and $f$ is a toral endomorphism whose center-stable subspace does not contain the stable subspace of $g$ at some point.
Given a smooth compact surface without focal points and of higher genus, it is shown that its geodesic flow is semi-conjugate to a continuous expansive flow with a local product structure such that the semi-conjugation preserves time parametrization. It is concluded that the geodesic flow has a unique measure of maximal entropy.
The transfer operator corresponding to a uniformly expanding map enjoys good spectral properties. We verify that coupling yields explicit estimates that depend continuously on the expansion and distortion constants of the map. For non-uniformly expanding maps with a uniformly expanding induced map, we obtain explicit estimates for mixing rates (exponential, stretched exponential, polynomial) that again depend continuously on the constants for the induced map together with data associated with the inducing time. Finally, for non-uniformly hyperbolic transformations, we obtain the corresponding estimates for rates of decay of correlations.
In this paper we present results on the concentration properties of the smoothing and filtering distributions of some partially observed chaotic dynamical systems. We show that, rather surprisingly, for the geometric model of the Lorenz equations, as well as some other chaotic dynamical systems, the smoothing and filtering distributions do not concentrate around the true position of the signal, as the number of observations tends to ∞. Instead, under various assumptions on the observation noise, we show that the expected value of the diameter of the support of the smoothing and filtering distributions remains lower bounded by a constant multiplied by the standard deviation of the noise, independently of the number of observations. Conversely, under rather general conditions, the diameter of the support of the smoothing and filtering distributions are upper bounded by a constant multiplied by the standard deviation of the noise. To some extent, applications to the three-dimensional Lorenz 63 model and to the Lorenz 96 model of arbitrarily large dimension are considered.
Let $\unicode[STIX]{x1D707}$ be the projection on $[0,1]$ of a Gibbs measure on $\unicode[STIX]{x1D6F4}=\{0,1\}^{\mathbb{N}}$ (or more generally a Gibbs capacity) associated with a Hölder potential. The thermodynamic and multifractal properties of $\unicode[STIX]{x1D707}$ are well known to be linked via the multifractal formalism. We study the impact of a random sampling procedure on this structure. More precisely, let $\{{I_{w}\}}_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ stand for the collection of dyadic subintervals of $[0,1]$ naturally indexed by the finite dyadic words. Fix $\unicode[STIX]{x1D702}\in (0,1)$, and a sequence $(p_{w})_{w\in \unicode[STIX]{x1D6F4}^{\ast }}$ of independent Bernoulli variables of parameters $2^{-|w|(1-\unicode[STIX]{x1D702})}$. We consider the (very sparse) remaining values $\widetilde{\unicode[STIX]{x1D707}}=\{\unicode[STIX]{x1D707}(I_{w}):w\in \unicode[STIX]{x1D6F4}^{\ast },p_{w}=1\}$. We study the geometric and statistical information associated with $\widetilde{\unicode[STIX]{x1D707}}$, and the relation between $\widetilde{\unicode[STIX]{x1D707}}$ and $\unicode[STIX]{x1D707}$. To do so, we construct a random capacity $\mathsf{M}_{\unicode[STIX]{x1D707}}$ from $\widetilde{\unicode[STIX]{x1D707}}$. This new object fulfills the multifractal formalism, and its free energy is closely related to that of $\unicode[STIX]{x1D707}$. Moreover, the free energy of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ generically exhibits one first order and one second order phase transition, while that of $\unicode[STIX]{x1D707}$ is analytic. The geometry of $\mathsf{M}_{\unicode[STIX]{x1D707}}$ is deeply related to the combination of approximation by dyadic numbers with geometric properties of Gibbs measures. The possibility to reconstruct $\unicode[STIX]{x1D707}$ from $\widetilde{\unicode[STIX]{x1D707}}$ by using the almost multiplicativity of $\unicode[STIX]{x1D707}$ and concatenation of words is discussed as well.
We show that if a finitely generated group $G$ has a nonelementary WPD action on a hyperbolic metric space $X$, then the number of $G$-conjugacy classes of $X$-loxodromic elements of $G$ coming from a ball of radius $R$ in the Cayley graph of $G$ grows exponentially in $R$. As an application we prove that for $N\geq 3$ the number of distinct $\text{Out}(F_{N})$-conjugacy classes of fully irreducible elements $\unicode[STIX]{x1D719}$ from an $R$-ball in the Cayley graph of $\text{Out}(F_{N})$ with $\log \unicode[STIX]{x1D706}(\unicode[STIX]{x1D719})$ of the order of $R$ grows exponentially in $R$.
It is an open question whether the fractional parts of non-linear polynomials at integers have the same fine-scale statistics as a Poisson point process. Most results towards an affirmative answer have so far been restricted to almost sure convergence in the space of polynomials of a given degree. We will here provide explicit Diophantine conditions on the coefficients of polynomials of degree two, under which the convergence of an averaged pair correlation density can be established. The limit is consistent with the Poisson distribution. Since quadratic polynomials at integers represent the energy levels of a class of integrable quantum systems, our findings provide further evidence for the Berry–Tabor conjecture in the theory of quantum chaos.
Algebraic limit cycles in quadratic polynomial differential systems started to be studied in 1958, and a few years later the following conjecture appeared: quadratic polynomial differential systems have at most one algebraic limit cycle. We prove that a quadratic polynomial differential system having an invariant algebraic curve with at most one pair of diametrically opposite singular points at infinity has at most one algebraic limit cycle. Our result provides a partial positive answer to this conjecture.
Consider a $C^{2}$ family of mixing $C^{4}$ piecewise expanding unimodal maps $t\in [a,b]\mapsto f_{t}$, with a critical point $c$, that is transversal to the topological classes of such maps. Given a Lipchitz observable $\unicode[STIX]{x1D719}$ consider the function
where $\unicode[STIX]{x1D707}_{t}$ is the unique absolutely continuous invariant probability of $f_{t}$. Suppose that $\unicode[STIX]{x1D70E}_{t}>0$ for every $t\in [a,b]$, where
where $\unicode[STIX]{x1D6F9}(t)$ is a dynamically defined function and $m$ is the Lebesgue measure on $[a,b]$, normalized in such way that $m([a,b])=1$. As a consequence, we show that ${\mathcal{R}}_{\unicode[STIX]{x1D719}}$ is not a Lipchitz function on any subset of $[a,b]$ with positive Lebesgue measure.