Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-07T12:17:09.375Z Has data issue: false hasContentIssue false

Algebraic Limit Cycles on Quadratic Polynomial Differential Systems

Published online by Cambridge University Press:  27 February 2018

Jaume Llibre*
Affiliation:
Departament de Matemàtiques, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Catalonia, Spain ([email protected])
Claudia Valls
Affiliation:
Departamento de Matemática, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal ([email protected])
*
*Corresponding author.

Abstract

Algebraic limit cycles in quadratic polynomial differential systems started to be studied in 1958, and a few years later the following conjecture appeared: quadratic polynomial differential systems have at most one algebraic limit cycle. We prove that a quadratic polynomial differential system having an invariant algebraic curve with at most one pair of diametrically opposite singular points at infinity has at most one algebraic limit cycle. Our result provides a partial positive answer to this conjecture.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Chavarriga, J. and Llibre, J., Invariant algebraic curves and rational first integrals planar polynomial vector fields, J. Differential Equations 169 (2001), 116.CrossRefGoogle Scholar
2.Chavarriga, J., Giacomini, H. and Llibre, J., Uniqueness of algebraic limit cycles for quadratic systems, J. Math. Anal. Appl. 261 (2001), 8599.CrossRefGoogle Scholar
3.Chavarriga, J., Llibre, J. and Sorolla, J., Algebraic limit cycles of degree four for quadratic systems, J. Differential Equations 200 (2004), 206244.CrossRefGoogle Scholar
4.Chen, L. S., Uniqueness of the limit cycle of a quadratic system in the plane, Acta Mathematica Sinica 20 (1977), 1113 (in Chinese).Google Scholar
5.Christopher, C., Invariant algebraic curves and conditions for a center, Proc. Roy. Soc. Edinburgh. 124A (1994), 12091229.CrossRefGoogle Scholar
6.Christopher, C., Llibre, J. and Swirszcz, G., Invariant algebraic curves of large degree for quadratic systems, J. Math. Anal. Appl. 303 (2005), 206244.CrossRefGoogle Scholar
7.Coll, B. and Llibre, J., Limit cycles for a quadratic systems with an invariant straight line and some evolution of phase portraits, In Qualitative theory of differential equations, Colloquia Mathematica Societatis Janos Bolyai, Volume 53, pp. 111123 (Bolyai Institute, Hungary, 1988).Google Scholar
8.Coll, B., Gasull, G. and Llibre, J., Quadratic systems with a unique finite rest point, Publ. Mat. 32 (1988), 199259.CrossRefGoogle Scholar
9.Coppel, W. A., Some quadratic systems with at most one limit cycle, Dynamics Reported, Volume 2, pp. 6188, 1989.Google Scholar
10.Evdokimenco, R. M., Construction of algebraic paths and the qualitative investigation in the large of the properties of integral curves of a system of differential equations, Differ. Equ. 6 (1970), 13491358.Google Scholar
11.Evdokimenco, R. M., Behavior of integral curves of a dynamic system, Differ. Equ. 9 (1974), 10951103.Google Scholar
12.Evdokimenco, R. M., Investigation in the large of a dynamic systems with a given integral curve, Differ. Equ. 15 (1979), 215221.Google Scholar
13.Filiptsov, V. F., Algebraic limit cycles, Differ. Equ. 9 (1973), 983986.Google Scholar
14.Hilbert, D., Mathematische probleme, Lecture at the Second International Congress of Mathematicians at Paris in 1900, in Göttingen Nachrichten (1900), 253297; English translation in Bull. Amer. Math. Soc. 8 (1902), 4370–4479.Google Scholar
15.Llibre, J., Integrability of polynomial differential systems, In Handbook of differential equations, ordinary differential equations (ed. Cañada, A., Drabek, P. and Fonda, A.), Volume 1, pp. 437533 (Elsevier, 2004).CrossRefGoogle Scholar
16.Llibre, J., Open problems on the algebraic limit cycles of planar polynomial vector fields, Bull. Acad. Sci. Moldova (Matematica) 56 (2008), 1926.Google Scholar
17.Llibre, J. and Swirszcz, G., Classification of quadratic systems admitting the existence of an algebraic limit cycle, Bull. Sci. Math. 131 (2007), 405421.CrossRefGoogle Scholar
18.Llibre, J. and Valls, C., On the uniqueness of algebraic limit cycles for quadratic polynomial differential systems with two pairs of equilibrium points at infinity, Geometria Dedicata 191 (2017), 3752.CrossRefGoogle Scholar
19.Llibre, J., Ramírez, R. and Sadovskaia, N., On the 16th Hilbert problem for algebraic limit cycles, J. Differential Equations 248 (2010), 14011409.CrossRefGoogle Scholar
20.Llibre, J., Ramírez, R. and Sadovskaia, N., On the 16th Hilbert problem for limit cycles on nonsingular algebraic curves, J. Differential Equations 250 (2011), 983999.CrossRefGoogle Scholar
21.Yablonskii, A. I., Limit cycles of a certain differential equations, Differ. Equ. 2 (1966), 193239.Google Scholar
22.Yuan-Xun, Q., On the algebraic limit cycles of sencod degree of the differential equation , Acta Math. Sinica 8 (1958), 2335.Google Scholar
23.Zhang, X., Invariant algebraic curves and rational first integrals of holomorphic foliations in CP(2), Sci. China Ser. A Math. 46(2) (2003), 271279.CrossRefGoogle Scholar
24.Zhang, X., The 16th Hilbert problem on algebraic limit cycles, J. Differential Equations 251 (2011), 17781789.CrossRefGoogle Scholar