We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Let k be an algebraically closed field and O = k[[t]] ⊂ F = k((t)). For an almost simple algebraic group G we classify central extensions 1 → m → E → G(F) → 1; any such extension splits canonically over G(O). Fix a positive integer N and a primitive character ζ : μN(K) → (under some assumption on the characteristic of k). Consider the category of G(O)-bi-invariant perverse sheaves on E with m-monodromy ζ. We show that this is a tensor category, which is tensor equivalent to the category of representations of a reductive group ǦE,N. We compute the root datum of ǦE,N.
We show that the limit of a one-parameter admissible normal function with no singularities lies in a non-classical sub-object of the limiting intermediate Jacobian. Using this, we construct a Hausdorff slit analytic space, with complex Lie group fibres, which ‘graphs’ such normal functions. For singular normal functions, an extension of the sub-object by a finite group leads to the Néron models. When the normal function comes from geometry, that is, a family of algebraic cycles on a semistably degenerating family of varieties, its limit may be interpreted via the Abel–Jacobi map on motivic cohomology of the singular fibre, hence via regulators on K-groups of its substrata. Two examples are worked out in detail, for families of 1-cycles on CY and abelian 3-folds, where this produces interesting arithmetic constraints on such limits. We also show how to compute the finite ‘singularity group’ in the geometric setting.
We prove that the infinitesimal variations of Hodge structure arising in a number of geometric situations are non-generic. In particular, we consider the case of generic hypersurfaces in complete smooth projective toric varieties, generic hypersurfaces in weighted projective spaces and generic complete intersections in projective space and show that, for sufficiently high degrees, the corresponding infinitesimal variations are non-generic.
A factorization formula for certain automorphisms of a Poisson algebra associated with a quiver is proved, which involves framed versions of moduli spaces of quiver representations. This factorization formula is related to wall-crossing formulae for Donaldson–Thomas type invariants of Kontsevich and Soibelman.
We consider the problem of preservation of stability under the Fourier–Mukai transform ℱℰ:D(X)→D(Y ) on an abelian surface and a K3 surface. If Y is the moduli space of μ-stable sheaves on X with respect to a polarization H, we have a canonical polarization on Y and we have a correspondence between (X,H) and . We show that the stability with respect to these polarizations is preserved under ℱℰ, if the degree of stable sheaves on X is sufficiently large.
Desingularized fiber products of semi-stable elliptic surfaces with Hetale3=0 are classified. Such varieties may play a role in the study of supersingular threefolds, of the deformation theory of varieties with trivial canonical bundle, and of arithmetic degenerations of rigid Calabi–Yau threefolds.
Suppose that X is a smooth quasiprojective variety over ℂ and ρ:π1(X,x)→SL(2,ℂ) is a Zariski-dense representation with quasiunipotent monodromy at infinity. Then ρ factors through a map X→Y with Y either a Deligne–Mumford (DM) curve or a Shimura modular stack.
We give a presentation of the moduli stack of toric vector bundles with fixed equivariant total Chern class as a quotient of a fine moduli scheme of framed bundles by a linear group action. This fine moduli scheme is described explicitly as a locally closed subscheme of a product of partial flag varieties cut out by combinatorially specified rank conditions. We use this description to show that the moduli of rank three toric vector bundles satisfy Murphy’s law, in the sense of Vakil. The preliminary sections of the paper give a self-contained introduction to Klyachko’s classification of toric vector bundles.
Let k be an algebraically closed field of positive characteristic p. We consider which finite groups G have the property that every faithful action of G on a connected smooth projective curve over k lifts to characteristic zero. Oort conjectured that cyclic groups have this property. We show that if a cyclic-by-p group G has this property, then G must be either cyclic or dihedral, with the exception of A4 in characteristic two. This proves one direction of a strong form of the Oort conjecture.
We use twisted sheaves and their moduli spaces to study the Brauer group of a scheme. In particular, we (1) show how twisted methods can be efficiently used to re-prove the basic facts about the Brauer group and cohomological Brauer group (including Gabber’s theorem that they coincide for a separated union of two affine schemes), (2) give a new proof of de Jong’s period-index theorem for surfaces over algebraically closed fields, and (3) prove an analogous result for surfaces over finite fields. We also include a reduction of all period-index problems for Brauer groups of function fields over algebraically closed fields to characteristic zero, which (among other things) extends de Jong’s result to include classes of period divisible by the characteristic of the base field. Finally, we use the theory developed here to give counterexamples to a standard type of local-to-global conjecture for geometrically rational varieties over the function field of the projective plane.
We introduce the notion of an alternate product of Frobenius manifolds and we give, after Ciocan-Fontanine et al., an interpretation of the Frobenius manifold structure canonically attached to the quantum cohomology of G(r,n+1) in terms of alternate products. We also investigate the relationship with the alternate Thom–Sebastiani product of Laurent polynomials.