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Abstract
Early-life malnutrition plays a critical role in foetal development and predisposes to metabolic diseases later in life, according to the concept of
‘developmental programming’. Different types of early nutritional imbalance, including undernutrition, overnutrition and micronutrient defi-
ciency, have been related to long-term metabolic disorders. Accumulating evidence has demonstrated that disturbances in nutrition during
the period of preconception, pregnancy and primary infancy can affect mitochondrial function and epigenetic mechanisms. Moreover, even
though multiple mechanisms underlying non-alcoholic fatty liver disease (NAFLD) have been described, in the past years, special attention has
been given to mitochondrial dysfunction and epigenetic alterations. Mitochondria play a key role in cellular metabolic functions. Dysfunctional
mitochondria contribute to oxidative stress, insulin resistance and inflammation. Epigenetic mechanisms have been related to alterations in
genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. In accordance, studies have reported that mitochondrial
dysfunction and epigenetics linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD. In this review,
we summarise the current understanding of the interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which
is relevant to developmental programming of NAFLD.

Keywords: Early-life nutrition: Epigenetics: Mitochondria: Developmental programming: NAFLD

(Received 21 April 2021; revised 2 December 2021; accepted 7 January 2022; accepted manuscript published online 24 January 2022)

Introduction

Non-alcoholic fatty liver disease (NAFLD) includes a spectrum of
liver disorders, ranging from simple liver steatosis to non-alco-
holic steatohepatitis (NASH) and cirrhosis, which can lead to
the development of liver cancer(1). The mechanisms underly-
ing the development of this metabolic disease are complex,
resulting from the interaction of genetic and environmental
factors. Maternal diet during gestation and lactation is an
important environmental condition that has direct effects on
liver development(2). In addition, early malnutrition can affect
mitochondrial function and epigenetics(3,4). In this sense, a
growing body of evidence indicates that inadequate nutrition
during preconception, pregnancy and early infancy can affect
the metabolic phenotype of the progeny, thus contributing to
the development of NAFLD in later life, according to the con-
cept of ‘developmental programming’(5).

The regulation of metabolism is strongly related to mitochon-
drial function.Mitochondria are subcellular organelles that play a
significant role in energy homoeostasis bymetabolising nutrients
as well as in ATP synthesis. Additionally, these organelles are
involved in a variety of processes, including regulation of apop-
tosis, calcium homoeostasis and generation of reactive oxygen
species (ROS)(6). In the past years, evidence has supported the

notion that mitochondrial dysfunction has a central role in the
pathophysiology of NAFLD. Alteration of mitochondrial function
was related to fat liver deposition, lipid peroxidation, hepatic
oxidative stress and accumulation of mitochondrial DNA
(mtDNA) damage(3,7). Moreover, it has been reported that mito-
chondrial dysfunction is linked to liver insulin resistance(8).

Epigenetic mechanisms involve changes in gene expression
and phenotype not associated with modifications in primary
DNA sequence. These alterations are heritable and induced
by the exposure to different environmental factors(2,9).
Epigenetics has been related to alterations in genes involved
in lipid metabolism, fibrogenesis, inflammation and tumori-
genesis(10). Studies have demonstrated that nutritional pertur-
bances during early development can lead to epigenetic
dysregulation, which may be later associated with NAFLD
development(2).

The aim of the present review is to discuss the interplay
between mitochondrial dysfunction and epigenetics and their
relation to the development of NAFLD associated with early-life
nutrition. We first outline the concept of developmental pro-
gramming and its relation to early-life nutrition. Next, we present
an overview of mitochondrial biology, including bioenergetics,
biogenesis and biodynamics. Then, we discuss the involvement
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of mitochondrial dysfunction and epigenetics in the pathogene-
sis of NAFLD, related to disturbances in early-life nutrition.
Finally, we conclude by establishing a link between NAFLD,
nutrition, epigenetics and mitochondrial dysfunction, and
describe future scopes of research in this field.

Developmental programming of NAFLD: Impact of
early-life nutrition

The nutritional environment during preconception, pregnancy
and early life plays a critical role in the development of the
progeny and is related to the incidence of acute and chronic dis-
eases later in life(11). Early nutritional environment, including
undernutrition, macronutrient excess or micronutrient defi-
ciency, has been related to long-term metabolic disorders(12).
Certainly, human epidemiological evidence and animal studies
have reported an association between maternal undernutrition
and the appearance of metabolic diseases in adulthood, such
as diabetes and NAFLD(13). Maternal obesity has also been dem-
onstrated to be an important risk factor for NAFLD(14). These
events are in accordance with the ‘developmental origins of dis-
ease hypothesis’, which posits that exposure to an adverse
environment during sensitive periods of cellular plasticity con-
fers an augmented risk of developing diseases later in life(15).
This process, known as ‘developmental programming’, is
directly related to the ‘thrifty phenotype’ hypothesis. This argues
that, when a foetus is exposed to undernutrition, it adapts to
nutrient availability limitation, thus conferring the capacity of
short-term survival under these adverse conditions. However,
these metabolic adaptations increase susceptibility to long-term
metabolic diseases when exposed to an adequate nutrient envi-
ronment(16). Similarly, maternal obesity and micronutrient defi-
ciency lead to the programming of the foetus as in maternal
undernutrition, since these nutritional environments represent
a form of foetal malnutrition(12).

Several animal studies have reported an association between
a maternal obesogenic environment and the development of
NAFLD in the progeny. In this regard, it has been shown that
exposure to a high-fat diet (HFD) during preconception, preg-
nancy and lactation leads to a NAFLD phenotype in rodents
and non-human primates(17,18). Moreover, the administration
of a HFD after weaning exacerbated this phenotype, with the off-
spring developing NASH in early adulthood, while the ones
exposed to a normal diet exhibited only simple steatosis(19,20).
Regarding the influence of high-calorie processed foods during
early life, Sánchez Blanco et al. reported that 21-day-old pups
from dams administered cafeteria diet during preconception,
gestation and lactation present increased plasma triacylglycerol
levels(21). In another study the long-term influence of cafeteria
diet during pregnancy and lactation was evaluated in 14-
month-old male rats, showing an increase in triacylglycerol
and fatty acid content in liver(22). Furthermore, the effects of
maternal junk food rich in energy, fat, sugar and salt were stud-
ied, demonstrating that offspring exposed to this diet during
foetal life developed several exacerbated signs of NAFLD, such
as liver steatosis, oxidative stress and hepatocyte ballooning at
the end of adolescence, when compared with animals that

had only received this diet from weaning(23). Interestingly, liver
steatosis and oxidative stress were also present in offspring from
junk-food-fed mothers that had received a regular diet after
weaning(23). Maternal Western-style diet administration during
prenatal and post-weaning periods also programmes suscep-
tibility to liver disease into male offspring, as a result of altera-
tions in inflammation and lipid metabolism(24). Additionally, a
considerable body of evidence from animal models has shown
a link between in utero undernutrition and the development of
NAFLD in the offspring. In this respect, it has been demonstrated
that the administration of low-protein diets during pregnancy
and lactation is conducive to liver steatosis in rats during adult-
hood(25,26). With regard to early micronutrient deficiency, it has
been shown that vitamin B12 restriction in maternal diets is con-
ducive to increased body fat mass, diabetes mellitus type 2, aug-
mented plasma cholesterol levels and dysregulation of fatty acid
metabolism pathways(27–29). Another study reported that vitamin
B12 and folate deficiency during gestation and lactation induces
rat liver steatosis at weaning and is related to impairedmitochon-
drial fatty acid oxidation and a significant reduction in birth
weight in the offspring(30). Sharma et al. demonstrated that
maternal calcium and vitamin D deficiency is conducive to
abnormal lipid metabolism and liver gene expression in female
offspring rats, resulting in liver steatosis, even though control diet
was administered after weaning(31). Given that NAFLD has
become one of the most prevalent liver metabolic diseases
worldwide, much interest has been given to developmental pro-
gramming, its association with the nutritional environment and
the potential underlying mechanisms.

Mitochondria: Bioenergetics, biogenesis and biodynamics

Mitochondria are double-membrane organelles that contain
their own DNA. The outer mitochondrial membrane (OMM)
and the inner mitochondrial membrane (IMM) enclose distinct
proteins and have different functions. The OMM is more per-
meable and characterised by the establishment of membrane
contact sites with endoplasmic reticulum, lysosomes, peroxi-
somes, plasma membrane, endosomes and lipid droplets. The
IMM includes the mitochondrial invaginations known as cristae,
which contain electron transport chain (ETC) complexes and
ATP synthase. A small intermembrane space is found between
the outer and inner mitochondrial membranes. IMM delimits
the mitochondrial matrix, which includes enzymes involved in
glycolysis, tricarboxylic acid (TCA) cycle and fatty acid β-oxida-
tion (FAO). In addition, the matrix encloses a circular mtDNA
which is packaged in nucleoids. mtDNA encodes two ribosomal
RNAs, twenty-two transfer RNAs, thirteen polypeptide subunits
of ETC and some noncoding RNAs, while the rest of proteins are
encoded by the nuclear genome.

Mitochondria are known as the ‘powerhouses of the cell’(32).
They generate energy in the form of ATP through oxidative
metabolism of nutrients(33). Glucose, amino acids and fatty acids
from nutrients are metabolised, and then enter the TCA cycle.
As a result, electrons are released and stored in the carriers
NADH and FADH2. These reducing agents transfer electrons
to the ETC in the IMM(34). Mitochondrial ETC includes five
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enzyme complexes. Complex I (NADH ubiquinone reductase)
collects electrons from NADH, while complex II (succinate
dehydrogenase) obtains them from FADH2. Then, electrons
from these complexes are transferred to coenzyme Q, which
donates them to complex III (ubiquinol–cytochrome c reduc-
tase). Complex IV (cytochrome c oxidase) oxidises cytochrome
c and transfers electrons to oxygen, forming water. This flow of
electrons along the ETC is employed to pump protons into the
intermembrane space(35), which establishes the electrochemical
gradient necessary for the generation of ATP through complex V
(ATP synthase) in the process of oxidative phosphorylation(36).

As described above, the transfer of electrons along the
ETC through oxygen is coupled to the generation of ATP.
However, a fraction of electrons commonly leak from the
ETC, reacting directly with oxygen and generating superoxide
radicals(37). These ROS may be converted to hydrogen peroxide
(H2O2), and then to hydroxyl radicals through the Fenton reac-
tion(32). Even though there exist eight sites involved in the pro-
duction of these ROS, mitochondrial complexes I, II and III are
the main contributors to ROS generation(38). Fortunately, mito-
chondria have antioxidant mechanisms to scavenge these
extremely reactive ROS, thus protecting molecules from
oxidative damage. These antioxidant defences comprise enzy-
matic and non-enzymatic mechanisms. The mitochondrial
enzyme superoxide dismutase converts superoxide anion into
H2O2, which is less reactive(39). H2O2 can then be converted
to water by different enzymes, including catalase, peroxiredox-
ins (PRX) and glutathione peroxidases (GPX)(40). While PRXs are
abundant in mitochondria, only isoform 4 of GPx is located in
this compartment and catalase is found in peroxisomes(40).
Mitochondrial enzymes PRX3 and PRX5 are oxidised by
H2O2, and then reduced by thioredoxin 2 and thioredoxin
reductase 2(41). In turn, GPX4 is oxidised by H2O2 and then
reduced by the non-enzymatic antioxidant glutathione(40). It
has been proposed that PRXs are the principal mitochondrial
antioxidant enzymes involved in the elimination of minimal
levels of H2O2, as a result of their high abundance and their
high rate constant. On the contrary, due to their lower abun-
dance, GPXs are critical for scavenging higher levels of H2O2,
when they can compete with PRXs for substrate(42). Under
physiological conditions, ROS have intracellular messenger
actions and their production is controlled by mitochondrial
antioxidant defences, to prevent cellular oxidative injury(43).
However, when these protective mechanisms are insufficient,
the overproduction of ROS results in oxidative damage to lip-
ids, mtDNA and proteins in mitochondria(44). In addition,
mitochondria have an important role in the defence against
ROS from other subcellular compartments such as peroxi-
somes(45). Other reactive species can be found in mitochon-
dria. Although the presence of nitric oxide synthase in
mitochondria has been controversial, either nitric oxide derived
from ETC or that produced in a different compartment, after dif-
fusing through the mitochondrial membranes, can react with
superoxide, forming peroxynitrite inside the mitochondria (46).
Even though peroxynitrites can affect different proteins, they
are efficiently detoxified by PRXs and GPXs(47). Since mitochon-
dria have a critical role in the production and maintenance of
physiological levels of ROS, alterations in these organelles can

lead to oxidative stress, which is considered to be an important
factor in the generation of hepatocyte injury in the context of
NAFLD(48). In animal models of NAFLD, enhanced ROS forma-
tion has been reported as a result of impairment of mitochon-
drial ETC activity(49). Similar observations were made in
patients with NAFLD(50). In addition, a diminished expression
and activity of antioxidant enzymes has been described in in
vitro and in vivo models of NAFLD(51). Thus, excessive ROS
production and decreased antioxidant capacity can contribute
to NAFLD pathogenesis.

Mitochondrial biogenesis is defined as the process by which
cells augment their mitochondrial mass via increasing their size
and number(52). The majority of mitochondrial constituents are
synthesised in the nucleus(53). These nuclear proteins have to
be imported into mitochondria. Therefore, mitochondrial bio-
genesis requires the coordinated expression of nuclear andmito-
chondrial genes(54). Different factors are involved in the
regulation of this process. Peroxisome proliferator-activated
receptor γ co-activator-1 α (PGC-1α) is a co-activator that pro-
motes mitochondrial biogenesis through the activation of differ-
ent nuclear receptors and nuclear transcription factors, including
nuclear respiratory factors (NRF) 1 and 2(55). NRF-1 and NRF-2
induce the transcription of almost every component of the
ETC, and promote the expression of mitochondrial transcrip-
tion factor A (Tfam), which leads to mtDNA synthesis(56).
Additionally, PGC-1α co-activates other factors such as
thyroid hormone, glucocorticoid, oestrogen, peroxisome pro-
liferator-activated receptors (PPAR) and oestrogen-related
receptors (ERR) α and γ(57). By acting as a co-activator of
PPAR α and δ, PGC-1α induces the expression of mitochon-
drial FAO genes(58). PGC-1α also affects mitochondrial bio-
genesis by interacting with ERRs, which are involved in
fatty acid metabolism and oxidative phosphorylation(59). In
turn, PGC-1α is regulated by AMP-activated protein kinase
(AMPK) and sirtuin 1 (SIRT1). AMPK phosphorylates PGC-
1α in response to acute energy deprivation(60). The protein
deacetylase SIRT1 activates PGC-1α in liver in response to fast-
ing(61). In contrast, the mitochondrial SIRT3 is a downstream
target of PGC-1α. SIRT3 up-regulates several proteins such
as FAO enzymes and ETC complexes I and II, thus affecting
mitochondrial biogenesis(62). PGC-1β is another co-activator
that regulates this process through NRF-1(63). Different studies
have shown that alterations in mitochondrial biogenesis are
related to obesity and type II diabetes(64,65), establishing an
important link with NAFLD development.

Mitochondrial dynamics involves the balance between fusion
and fission mechanisms to maintain normal mitochondrial func-
tion. Mitochondrial fusion refers to the union of two mitochon-
dria resulting in one mitochondrion. This event is mediated by
mitofusin 1 (MFN1) and mitofusin 2 (MFN2), which enable the
fusion of OMMs, and optic atrophy 1 (OPA1), which allows
the fusion of IMMs(66,67). Mitochondrial fission involves the divi-
sion of a mitochondrion into twomitochondria. It is mediated by
different proteins such as dynamin-related protein 1 (DRP1),
mitochondrial fission factor (MFF), mitochondrial dynamics pro-
teins of 49 kDa (MID49) and 51 kDa (MID51), andmitochondrial
fission 1 protein (FIS1)(68–71). In this process, DRP-1 translocates
from the cytosol to mitochondria, and then binds to MFF, MID49,
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MID51 and FIS1 in the OMM. This allows for DRP1 oligomerisa-
tion and posterior mitochondrial division(72). The balance
between fusion and fission events depends on the metabolic
state and the nutrient availability of cells(73). In response to an
enriched nutrient environment, mitochondria undergo fragmen-
tation, while starvation induces mitochondria elongation(74–76).
Thus, mitochondrial fragmentation leads to reduced ATP pro-
duction and nutrient storage, in an attempt to prevent energy
waste. On the contrary, mitochondrial elongation leads to main-
tenance of ATP generation, through an increase inmitochondrial
bioenergetic efficiency(77). Additionally, a shift toward fission is
related to degradation of injured mitochondria through the proc-
ess of mitophagy(78).

Mitochondrial dysfunction, NAFLD and early-life
nutrition

Different mechanisms are involved in the development and pro-
gression of NAFLD. The ‘two-hit hypothesis’ was initially postu-
lated to explain the occurrence of this metabolic disorder(79).
According to this theory, the ‘first hit’ is represented by liver accu-
mulation of lipids as a consequence of sedentary lifestyle, hyper-
energetic diets, insulin resistance and obesity. Afterwards, this
fatty liver becomes more vulnerable to a ‘second hit’, which
induces inflammation and fibrosis. However, accumulating
research has shown that this theory is insufficient to explain
the complex alterations observed in human NAFLD patients.
Nowadays, the most accepted model is the ‘multiple-hit hypoth-
esis’. This theory posits that multiple factors act in conjunction in
genetically susceptible individuals to lead to the development of
NAFLD. These ‘hits’ include dietary factors, insulin resistance,
adipose tissue dysfunction and changes in gut microbiome(80).
The high levels of NEFAs, free cholesterol and other lipid metab-
olites that are derived from the above-described insults induce
lipotoxicity(81). This environment in the liver leads to an impaired
mitochondrial function that favours an excessive production of
ROS and inflammation(82). The ‘multiple-hit hypothesis’ consid-
ers mitochondrial dysfunction a critical player in the develop-
ment of NAFLD(78). In fact, evidence shows that hepatic
mitochondrial dysfunction occurs before NAFLD development
in rodents(83). Accordingly, livers from NASH patients showed
structural and functional mitochondrial alterations. Structural
damage includes morphological changes, such as para-crystal-
line inclusions in megamitochondria and mtDNA depletion,
which may be related to the liver injury developed in NAFLD
patients(84,85). Functional modifications include impaired mito-
chondrial protein synthesis which is related to uncoupling and
decrease of ETC complex activities, alterations in mitochondrial
biogenesis and biodynamics, and reduced concentrations of
antioxidant enzymes(85). Similar alterations have been observed
in ob/ob mice, which showed modifications in ROS production
and glutathione levels, lipid peroxidation and changes in
mitophagy and mitochondrial biogenesis(78).

Mitochondrial structure and function are directly related
to the cellular metabolic state. An enriched nutrient environ-
ment induces fragmentation of mitochondria, increase of
mitochondrial ROS production and mtDNA damage, whereas

undersupply of nutrients restricts mtDNA damage and induces
fusion and elongation of mitochondria. A continuous
metabolic imbalance induces alterations in mitochondrial
morphology that could affect mitochondrial function and
mtDNA quality that, in turn, can alter the susceptibility to
long-termmetabolic diseases(3,86,87). Importantly, studies have
demonstrated that even mitochondria in the fertilised oocyte
are prone to damage by nutritional stressors. Oocytes exposed
to a high-fat high-sucrose diet showed a diminishment in
mitochondrial membrane potential and in the metabolites
involved in ATP production, and absence of mitophagy,
thus resulting in the transmission of dysfunctional mitochon-
dria(88). Moreover, the maintenance of this altered mitochon-
drial phenotype has been demonstrated across generations,
and has been proven to favour the development of insulin
resistance in the offspring(89). In this regard, it is important
to note that the transfer of these mitochondrial disturbances
through three generations was observed between obese
mothers and female offspring, supported by the fact that these
organelles are maternally inherited(89).

Several studies have demonstrated a strong relationship
between early-life malnutrition, NAFLD and mitochondrial dis-
turbances (Table 1). In this regard, different alterations in
mtDNA,mitochondrial bioenergetics, biogenesis and biodynam-
ics have been related to metabolic disorders, including obesity,
diabetes and NAFLD(48,90,91). Alfaradhi et al. reported that young
offspring (8 weeks of age) exposed to a high-fat, high-sugar
diet during pregnancy and lactation, which reflects a Western
obesogenic environment, presented augmented mitochondrial
complex I and II activities and diminished mitochondrial cyto-
chrome c and glutamate dehydrogenase levels, showing hepatic
dysfunctional mitochondria(92). These detrimental changes were
associated with an increase in hepatic lipid content, oxidative
damage, PPARγ expression and insulin levels, and a decrease
in triacylglycerol lipase(92). Another study showed that adult off-
spring exposed to a semisynthetic not obesogenic Western-style
diet (rich in energy, moderate in fat and cholesterol) from pre-
natal to post-weaning developed microvesicular fat accumula-
tion and diminished plasma β-hydroxybutyrate and mRNA
levels of PPARα, showing an imbalance between mitochondrial
FAO and augmented production of fatty acids, which is
consistent with mitochondrial dysfunction(24). Impairment of
mitochondrial ETC complex activities (I, II, III and IV) and
reduced serum concentrations of β-hydroxybutyrate were also
demonstrated by others in offspring fed a HFD (42 % kcal from
fat) that had been born to obese mothers, during gestation and
post-weaning(18,93). Burgueño et al. reported that exposure to a
HFD (40 % fat added to standard diet) 2 weeks before breeding
and during gestation and lactation resulted in adult offspring (18
weeks of age) with reduced hepatic mtDNA content and male-
specific diminishment in hepatic transcriptional activity of
PGC1α, which was further related to insulin resistance and
abnormal liver fat accumulation(94). Other studies have shown
that post-weaning HFD-fed adult offspring (45 % kcal from
fat) born to pre-pregnancy obese dams presented reduced
levels of regulators of mitochondrial dynamics (PGC1α,
PGC1β and ERRα) and mitofusins in liver(95). In another set
of experiments, de Velasco et al. demonstrated the effecs of
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Table 1 Studies associated with the interplay between early-life nutrition, NAFLD and mitochondrial disturbances

Early-life nutritional insult Diet description Species Mitochondrial dysfunction
Effects on offspring related to
NAFLD Reference

Western-type (not obesogenic) diet during
prenatal, lactation and post-weaning
periods

Energy-rich- semisynthetic Western diet
(45 % kcal fat, 20 % kcal protein, 35 %
kcal carbohydrate; 4·73 kcal/g)

Mouse ↓plasma β-hydroxybutyrate imbalance between
mitochondrial FAO and ↑production of fatty acids

↑microvesicular lipid
accumulation

↑inflammation
↑liver injury

24

Obesogenic diet (high-fat, high-sugar)
during pregnancy and lactation

Energy-rich highly palatable obesogenic
diet (10 % simple sugars, 20 % animal lard,

28 % polysaccharide,
23 % protein (wt/wt), 28·43 kJ/g)

supplemented with sweetened
condensed milk (16 % fat, 33 % simple

sugars, 15 %
protein, 13·7 kJ/g)

Mouse ↑mitochondrial complex I and II activities
↓cytochrome c
↓glutamate dehydrogenase

↑hepatic lipid content
↑oxidative stress
↑PPARγ expression
hyperinsulinemia ↓triacylglycerol

lipase

92

High-fat obesogenic diet during prenatal,
gestation, and post-weaning periods

Diet (42 % kcal fat, 42·7 % kcal carbohy-
drates, 15·2 % kcal protein; 4·5 kcal/g)

Mouse ↓mitochondrial ETC complex activities (I, II, III and
IV)

↓plasma β-hydroxybutyrate

↓reduced sensitivity to insulin
↑serum leptin, insulin, triacylgly-

cerol, glucose and NEFA levels

93

High-fat diet during 2 weeks before
conception, gestation and lactation

Solid diet (40 % wt/wt bovine
and porcine fat added to the standard

chow)

Rat ↓liver mtDNA copy number Fatty liver
Insulin resistance and hyperlepti-

nemia in male offspring

94

Maternal intra-uterine obesity and/or
high-fat diet during post-weaning period

Obesogenic liquid diet (5 % kcal fat, 20 %
kcal protein, 75 % kcal carbohydrate) at
220 kcal/kg per day (40 % excess of
calories) and/or high-fat diet

(45 % kcal from fat)

Rat ↓transcriptional regulators of mitochondrial dynam-
ics (PGC1α, PGC1β and ERRα)

↓MFN1 and MFN2

↓energy expenditure
Impaired fat utilisation

95

Normolipidic diets rich in
Trans-unsaturated fatty acids or inter-esteri-

fied fat during pregnancy and lactation

Isoenergetic diets (17·2 kJ/g of dry diet)
containing 6 % partially hydrogenated

vegetable oil plus 1 % soyabean oil, or 5 %
inter-esterified fat plus

2 % soyabean oil

Mouse Respiration impairment
↑liver H2O2

production ↓mitochondrial Ca2þ

retention capacity

Impaired glucose homoeostasis
Alterations in serum and hepatic

lipids profile

96

FAO, fatty acid β-oxidation; ETC, electron transport chain; mtDNA, mitochondrial DNA; PGC1, peroxisome proliferator-activated receptor-γ co-activator α; ERR, oestrogen-related receptor; MFN, mitofusin; PPAR, peroxisome proliferator-
activated receptor.
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maternal consumption of isoenergetic and normolipidic diets
rich in trans-fatty acids, that is, hydrogenated fat, or its indus-
trial substitute lipid source, interesterified fatty acids, during
pregnancy and lactation(96). These early-life insults predis-
pose to hepatic mitochondrial dysfunction in adult offspring
(postnatal day 110), related to changes in mitochondrial
bioenergetics, which includes respiration impairment,
augmentation of H2O2 production in the liver and compro-
mised mitochondrial membrane permeability(96). The current
research provides convincing evidence for the critical role of
these mitochondrial alterations in offspring programming
related to malnutrition and NAFLD development.

Epigenetics, NAFLD and early-life nutrition

Although the exact mechanisms underlying NAFLD develop-
ment have not been completely described, epigenetics arises
as an important player contributing to NAFLD pathophysiol-
ogy(91). Furthermore, studies have established a link between
environmental factors, epigenetics and developmental program-
ming(97). In this regard, it is important to mention that inadequate
nutrition during preconception, pregnancy and early infancy has
been related to epigenetic modifications in genes involved in
lipidmetabolism and inflammation, whichmay favour the devel-
opment of metabolic alterations later in life(97,98). The epigenetic
mechanisms that regulate nuclear gene expression include
non-coding RNAs, DNAmethylation and post-translational mod-
ifications of histones. DNA methylation refers to methylation of
cytosine nucleotides at CpG-rich promoters(10). While hyperme-
thylation blocks gene transcription, hypomethylation induces
gene activation, which depends on the activity of DNA methyl-
transferases (DNMT)(2). Post-translational modifications of
histones include acetylation, methylation, ubiquitylation, phos-
phorylation and SUMOylation(2). Histone acetylation is the most
reported mechanism. While acetylation is related to promotion
of gene transcription, deacetylation is associated with gene inac-
tivation(2). Among non-coding RNAs, microRNAs (miRNA) are
the most studied. MiRNAs are non-coding single-stranded
RNAs with nineteen to twenty-three nucleotides that modulate
mRNA degradation or inhibition of translation(2).

In the past years, several studies have shown the interplay
between adverse maternal nutrition, epigenetic modifications
and developmental programming of this liver disease(97)

(Table 2). Researchers found that a high-fat lard diet rich in
unsaturated fatty acids (35 %) during preconception and preg-
nancy until gestation days 18–20 modulated the epigenome of
foetal livers, evidenced by the promotion of DNA methylation
and histone acetylation, leading to liver lipid accumulation(99).
Keleher et al. reported that a maternal HFD induced thousands
of DNA methylation alterations in livers of post-weaning HFD-
fed offspring mice (42 % kcal from fat), which were also evident
in adulthood(93). In addition, in HFD-fed daughters, these epige-
netic alterations were associated with obesity and diabetes-
related phenotypic changes(93). Similarly, Seki et al. showed that
exposure to a maternal high-fat lard diet during preconception,
gestation and lactation results in global hepatic DNA hyperme-
thylation in male offspring(100). Persistent methylation of three

genes involved in growth and metabolism (Arhgef19, Zbtb17/
Miz-1 and Mmp9) was observed in these offspring throughout
life(100). Exposure to aWestern diet (rich in energy andmoderate
in fat and cholesterol) during preconception, pregnancy,
lactation and post-weaning results in phenotypic alterations
compatible with NAFLD in the offspring, which were further
associated with significant methylation differences in PPARα,
an important gene involved in lipid metabolism(24). In accor-
dance, Whankhade et al. showed that maternal overnutrition
via in utero exposure to a HFD (45 % fat) induced alterations
in DNA methylation of PGC1α and Fgf21 in livers of post-wean-
ing HFD offspring, which may be involved in NAFLD develop-
ment(97). A maternal HFD (22·6 % fat) during pregnancy and
lactation has also been demonstrated to affect miRNA expression
in adult offspring livers(101). Furthermore, it was evidenced that
an adverse intra-uterine environment induced by a high-sucrose
(72%), low-copper diet induces significantmodifications in DNA
methylation of 327 regions corresponding to 183 genes in off-
spring rat livers. The affected pathways were associated with
metabolic disease, insulin resistance and carbohydrate metabo-
lism(102). A high-fat high-cholesterol Western-type diet before
and during gestation and lactation given to apolipoprotein
(Apo) E-deficient dams resulted in augmented hepatic methyla-
tion of CpG nucleotides on the promoter region of ApoB genes
of male adult offspring(103). The progeny also developed hyper-
insulinemia, insulin resistance, glucose intolerance and hepatic
steatosis(103). Another study showed that perinatal exposure to
an obesity-inducing diet rich in saturated fat, fructose and cho-
lesterol, used to reproduce the Western fast-food diet, induced
alterations compatible with NAFLD in the offspring (10 weeks
of age), which were further related to differential expression
and methylation of genes associated with fibrosis and cell death
pathways(104). Interestingly, these authors also demonstrated
that this phenotype could be reversed if a healthy diet is admin-
istered after weaning to the offspring; otherwise, the progeny
would develop a NASH phenotype following re-exposure to this
Western fast-food diet in adulthood(104). Du et al. reported that
the male offspring born to mothers exposed to 50 % food restric-
tion during gestation presented a dysregulated hepatic metabo-
lism through alterations in taurine levels and hepatocyte nuclear
factor 4 A (HNF4A)methylation that is associatedwith alterations
in hepatic lipogenesis and gluconeogenesis(105). In another
study, which fed pregnant rats a low-protein (8 %) diet, maternal
protein restriction during gestation led to histone acetylation
of liver X receptor α (Lxrα) in male rat offspring(106). This finding
suggests that its promoter was epigenetically silenced, thus
leading to glucose intolerance in adulthood(106). Intra-uterine
growth restriction as a result of maternal low-protein diet (8
%) during pregnancy and lactation induced repressive histone
modifications at hepatic cholesterol 7α-hydroxylase promoter
in adult rat offspring, leading to an increase in cholesterol lev-
els(107). In non-human primates, in utero exposure to a HFD
(32 % calories from fat), but not maternal obesity per se, altered
the foetal metabolome through augmented acetylation of
histone H3 (H3K14ac) and decreased SIRT1 expression in foetal
livers(108). These modifications were related to altered expres-
sion of PPARα, PPARγ, SREBF1, Cyp7A1, Fasn and SCD, which
are modulated by SIRT1 and known to be dysregulated in
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Table 2 Studies related to the link between early-life nutrition, NAFLD and epigenetics

Early-life nutritional insult Diet description Species Epigenetic alterations Effects on offspring related to NAFLD Reference

Western-type diet during preconception,
pregnancy and lactation

Energy-rich- semisynthetic Western diet (not
obesogenic)

(20 % kcal protein, 35 %
kcal carbohydrate, 45 % kcal fat; 4·73 kcal/g)

Mouse ↑DNA methylation in PPARα,
Insig2, and Fasn genes

↑hepatic lipid content
↑oxidative stress
↑PPARγ expression
hyperinsulinemia ↓triacylglycerol lipase

24

High-fat obesogenic diet during prenatal,
gestation and post-weaning periods

Diet (15·2 % kcal protein, 42·7 % kcal
carbohydrates, 42 % kcal fat; 4·5 kcal/g)

Mouse DNA methylation differences in
thousands of hepatic genes

↓sensitivity to insulin
↑serum leptin, insulin, triacylglycerol, glucose

and NEFA levels

93

High-fat lard diet dietary rich in
unsaturated fatty acids during prenatal
period and pregnancy until gestation
days 18–20

Diet containing 35 g lard fat/100 g diet Rat Foetal livers:
↑global DNA methylation↑DNMT1

activity
↓acetylated H2A and H2B levels
↓HAT activity

↑adipogenesis in foetal livers 99

Obesogenic diet during preconception,
pregnancy, lactation and post-weaning
periods

Diet (14·7 % kcal protein, 40·7 % kcal
carbohydrate, 44·6 % kcal total fat: 61 % SFA,
30 % MUFA, 9 % PUFA; 4·7 kcal/g)

Mouse DNA methylation
alterations in
PGC1ß and
Fgf21

Hepatic steatosis ↑inflammation
↑pro-fibrogenic gene expression

97

High-fat diet during 2 weeks before
conception, pregnancy and lactation

Obesogenic diet containing 35·5 % fat as lard,
20 % protein, 36·3 % carbohydrate,
(5·49 kcal/g)

Mouse Persistent DNA methylation
alterations in

Arhgef19, Zbtb17/Miz-1 and Mmp9

↑adiposity
impaired glucose tolerance and insulin

sensitivity

100

High-fat diet prior to conception, during
pregnancy and lactation

Diet (22·6 % fat, 23 %
protein, 48·6 % carbohydrate, wt/wt)

Mouse ↓expression of miR-709, miR-122,
miR-494, miR-192, miR-194,
miR-26a, let-7a, let7b and let-7c,
and miR-483

↑hepatic
mRNA levels of genes involved in
fat metabolism
(PPARα, cpt-1a, IGF2)

101

Maternal high fat/high
cholesterol Western-type diet
before and during pregnancy and lactation

High-fat, high-cholesterol diet composed of 43 %
kcal from fat, 16·5 % kcal from protein, 38·7 %
kcal from carbohydrate and 0·2 % cholesterol

Mouse Hypermethylation of hepatic
ApoB gene

Hyperinsulinemia Insulin resistance Glucose
intolerance

Hepatic steatosis

103

Obesity-inducing diet rich in fat, fructose
and cholesterol (Western fast-food diet)
before conception and during gestation
and lactation

Diet composed
of 40 % energy as fat (12 % saturated fatty acid,
0·2 % cholesterol)
with fructose (23·1 g/L final concentration)
and glucose (18·9 g/L) in the drinking-water

Mouse Differential
methylation linked to profibrogenic

and pro-inflammatory gene
signature

Hepatocellular ballooning
Lipoapoptosis
↑liver steatosis ↑liver injury ↑liver

inflammation ↑liver fibrosis

104

Maternal food restriction during gestation 50 % food-restriction diet Rat Changes in HNF4A methylation ↑liver lipid
accumulation
↑plasma glucose levels

105

Low-protein diet during gestation Isoenergetic low-protein diet containing 8 %
protein

Rat ↓acetylation of histone H3 (K9,14)
surrounding transcriptional start

site of hepatic Lxrα

Glucose intolerance 106

Low-protein diet during pregnancy
and lactation

Isoenergetic low-protein diet containing 8 %
protein

Rat ↓acetylation
and ↑methylation of histone H3

(K9,14) surrounding promoter
region of hepatic Cyp7a1

↑serum and hepatic cholesterol levels 107

Maternal intra-uterine exposure to high-fat
diet

Diet composed of 32 % calories from fat, 18 %
from protein and 45 % from carbohydrates

Macaque ↑acetylation of histone H3
(H3K14ac)

Alterations in expression of PPARα, PPARγ,
SREBF1, Cyp7a1, Fasn and SCD in foetal
livers

108
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NAFLD(108). Maternal obesity induced by a high-fat high-fructose
diet during preconception and pregnancy until gestation day 165
showed dysregulated TCA cycle, proteasome, glycolysis, oxida-
tive phosphorylation and Wnt/β-catenin pathways along with
excessive lipid accumulation in foetal baboon livers(109). This
was correlated with the identification of several miRNAs that
were inversely expressed with key genes in these pathways that
have been shown to be regulated by these miRNAs, suggesting
that these foetal hepatic miRNA–gene interactions may affect
these pathways, thus leading to regulation of cell proliferation,
liver steatosis, hepatic fibrosis and lipid metabolism(109). In con-
junction, the available evidence strongly supports the notion that
modulation of the nuclear epigenome mediated by early-life
nutrition plays an important role in NAFLD pathophysiology.
Thus, current epigenetic studies not only may explain the mech-
anisms underlying the development of NAFLD, but also provide
evidence concerning the role of epigenetic modifications in the
developmental programming of this liver disease.

Due to evident ethical restrictions, there exists limited evi-
dence concerning a link between adverse maternal nutrition,
metabolic disease and epigenetic alterations in human offspring.
The famine suffered by pregnant human females during the
Dutch Hunger Winter in 1944–1945 provides evidence about
the consequences of long-term exposure to maternal undernu-
trition in humans(110,111). In this regard, it was reported that
human offspring who were exposed to famine during the first
and second trimester in utero had lower birth weights than those
not exposed(112). Moreover, prevalence of obesity in young men
was augmented in those individuals who had been exposed to
famine undernutrition during the first half of pregnancy(113). In
addition, epidemiological studies from the Chinese Great
Famine (1959–1961) have demonstrated a significant association
between early-life undernutrition and augmented risk of later
NAFLD development, where steatosis degree was determined
by abdominal ultrasonography(114,115). Early famine exposure
has also been linked to obesity, type 2 diabetes and metabolic
syndrome, which are closely related to NAFLD(116–118). It is
important to mention that, even though findings that link early
famine exposure to NAFLD development have been reported,
we cannot conclude that higher risks for NAFLD in early fam-
ine-exposed individuals are exclusively related to early-life
malnutrition.

Even though human studies usually employ reduced
birth weight to demonstrate the effects of an inadequate mater-
nal nutrition, researchers showed that a lower birth weight was
insufficient to probe epigenetics involvement(119). Interestingly,
while human offspring born alive (50–58 years ago) with a nor-
mal birth weight who were exposed to famine during the Dutch
Hunger Winter at early gestation showed epigenetic alterations,
those offspringwith low birth weight exposed to this famine dur-
ing late gestation did not present epigenetic modifications(119)

(Table 2). In fact, other researchers reported lower DNA
methylation of the insulin-like growth factor II gene in human
offspring born alive exposed to this famine (winter of 1944–
1945) during periconception, in comparison with their unex-
posed siblings of the same sex, six decades later(111). These data
support the notion that, in humans, adverse maternal nutrition
leads to epigenetic alterations during the first stages ofT
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development that are maintained over time, which may be
related to metabolic liver disease during adulthood.

Interestingly, while epigenetic regulation of nuclear DNA has
been extensively reported, that of mtDNA has recently been
demonstrated(120,121). Moreover, in the past years, studies have
reported the complex interaction between mitochondrial
metabolism, epigenetics and environmental changes(122).
Mitochondria are highly sensitive to environmental factors
and could acquire epigenetic alterations that may disrupt
mitochondrial function(123). Maternal nutrition is described
as a relevant factor that may affect these epigenetic modifica-
tions(124). In addition, since mitochondria depend on nuclear-
encoded proteins to function, it is crucial to explain the link
between nuclear and mitochondrial DNA and the subsequent

epigenetic alterations to nuclear DNA that may affect
mitochondrial metabolism. Mitochondrial epigenetic mecha-
nisms include mtDNA methylation, post-translational modifi-
cations of nucleoid-associated proteins and non-coding RNAs
(ncRNA)(122).

Over the last years, the epigenetic mechanism of mtDNA
methylation has been extensively studied. However, it is far
from being clearly understood. Studies have centred on
mtDNA methylation at CpG sites, though adenine and non-
CpGmethylations have also been discovered(125,126). Moreover,
it has been hypothesised that mtDNAmethylation on adenine is
the principal alteration among them(122). Given that environ-
mental factors could affect mtDNA methylation, maternal diet
arises as an important contributor to mtDNA regulation. In this

Fig. 1. Interplay between mitochondrial dysfunction, epigenetics and nutrition during early life, which is relevant to developmental programming of NAFLD. Different
types of early nutritional imbalances, including undernutrition, overnutrition and micronutrient deficiency, have been related to long-term metabolic disorders.
Accumulating evidence has demonstrated that disturbances in nutrition during the period of preconception, pregnancy and primary infancy can affect mitochondrial
function and epigenetic mechanisms. In addition, in the past years, special attention has been given to mitochondrial dysfunction and epigenetic alterations as probable
mechanisms underlying non-alcoholic fatty liver disease (NAFLD). Dysfunctional mitochondria contribute to oxidative stress, insulin resistance and inflammation.
Epigenetic mechanisms have been related to alterations in genes involved in lipid metabolism, fibrogenesis, inflammation and tumorigenesis. Mitochondria are highly
sensitive to environmental factors and could acquire epigenetic alterations that may disrupt mitochondrial function. Thus, mitochondrial dysfunction and epigenetics
linked to early-life nutrition can be important contributing factors in the pathogenesis of NAFLD.
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regard, it has been reported that a maternal low-protein diet dur-
ing pregnancy alters DNA methylation and hydroxymethylation
of mtDNA-encoded oxidative phosphorylation gene promoters
in a sex-specific manner, in livers of newborn piglets(127). These
modifications may be associated with long-term consequences
in energy homoeostasis(122) that, in turn, could be involved in
the development of liver metabolic disease.

Unlike nuclear DNA, mtDNA is not surrounded by histones.
However, mtDNA is organised in nucleoids. Thus, this epige-
netic mechanism is referred to as post-translational modification
of nucleoid-associated proteins. The principal protein present in
mitochondrial nucleoids is Tfam, which is a nuclear-encoded
binding factor also required for mtDNA transcription(128).
Different post-translational modifications of Tfam have been
reported, including acetylation, glycosylation, phosphorylation
and ubiquitination(122,129–131). For instance, phosphorylation
and acetylation of Tfam reduce the binding affinity of Tfam to
DNA, thus resulting in a decreased mtDNA compaction that ulti-
mately leads to alterations in mtDNA transcription(122). Although
it can be hypothesised that all of those alterations may affect
Tfam function, which, in turn, could lead to mitochondrial
dysfunction that may later be involved in NAFLD develop-
ment, until now there is no evidence supporting the notion
that epigenetic modifications of Tfam are associated with
NAFLD pathophysiology.

Recently, it was reported that the presence of ncRNAs
inside mitochondria was associated with epigenetic regula-
tion of mitochondrial gene expression(122,132). These ncRNAs
include nuclear-encoded and mitochondria-encoded ncRNAs
(nuclear ncRNAs and mt-ncRNAs, respectively). While the for-
mer are involved in anterograde communication, the latter are
associated with retrograde communication(133). With regard to
mt-ncRNAs, long non-coding RNAs (mt-lncRNA) and small
non-coding RNAs (mt-sncRNA) are included. The discovery of
these ncRNAs in mitochondria increases the level of complexity
in mitochondrial gene expression. However, few studies have
related mt-ncRNAs to the development of diseases, such as
cancer and cardiovascular diseases(134,135). Therefore, until
now, data are insufficient to establish a link between mitochon-
drial epigenetics and NAFLD development. However, it can be
envisioned that the association between mt-ncRNAs and human
diseases in general, and NAFLD in particular, may be potent as
they are relevant in mitochondrial homoeostasis and communi-
cation. In this sense, mt-ncRNAs may be employed as bio-
markers of different diseases.

Conclusion and perspectives

In summary, the reviewed data support the relevance of
mitochondrial dysfunction and epigenetic modifications as con-
tributors to the dysregulated mechanisms underlying the devel-
opmental programming of NAFLD. Rodent and non-human
primate studies have shown that early-life exposure, including
preconception, pregnancy, lactation and early infancy, to an
adverse nutritional environment is linked to long-term altera-
tions in mitochondrial function and epigenetics in the offspring
(Fig. 1). Due to evident ethical limitations, human studies

concerning this association are scarce. Given that dysfunctional
mitochondria are strongly related to NAFLD development, mito-
chondrial epigenetics could also be involved in the regulation of
NAFLD pathogenesis, in the context of early-life malnutrition.
However, the association of mitochondrial epigenetics and
NAFLD in this adverse context has yet to be elucidated.

The increasing prevalence of NAFLD in the past years
positions it as an emerging health concern. Therefore, clarifi-
cation of the modulation of the epigenome and mitochondrial
function related to nutritional disturbances during early
life may contribute to the progress in this emerging field
of research. Advances in the understanding of these dysregu-
lated mechanisms in NAFLD are essential to design early inter-
ventions applied during the critical periods of human
development intended to prevent this liver disease. More
research in this field would aid the development of adequate
treatment strategies, focused on mitochondrial function
improvement and epigenome modulation, to prevent and/
or treat NAFLD. Furthermore, this knowledge would be ben-
eficial for the design of new diagnostic biomarkers..
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