A crucial role in the Nyman-Beurling-Báez-Duarte approach to the Riemann Hypothesis is played by the distance
$$d_{N}^{2}:=\underset{{{A}_{N}}}{\mathop{\inf }}\,\frac{1}{2\pi }\int _{-\infty }^{\infty }{{\left| 1-\zeta {{A}_{N}}\left( \frac{1}{2}+it \right) \right|}^{2}}\frac{dt}{\frac{1}{4}+{{t}^{2}}},$$
where the infimum is over all Dirichlet polynomials
$${{A}_{N}}\left( s \right)\,=\,\sum\limits_{n=1}^{N}{\frac{{{a}_{n}}}{{{n}^{s}}}}$$
of length $N$. In this paper we investigate $d_{N}^{2}$ under the assumption that the Riemann zeta function has four nontrivial zeros off the critical line.