We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.
We prove a general formula that relates the parity of the Langlands parameter of a conjugate self-dual discrete series representation of $\operatorname { {GL}}_n$ to the parity of its Jacquet-Langlands image. It gives a generalization of a partial result by Mieda concerning the case of invariant $1/n$ and supercuspidal representations. It also gives a variation of the result on the self-dual case by Prasad and Ramakrishnan.
We state a conjecture that relates the derived category of smooth representations of a $p$-adic split reductive group with the derived category of (quasi-)coherent sheaves on a stack of L-parameters. We investigate the conjecture in the case of the principal block of ${\rm GL}_n$ by showing that the functor should be given by the derived tensor product with the family of representations interpolating the modified Langlands correspondence over the stack of L-parameters that is suggested by the work of Helm and of Emerton and Helm.
Kottwitz’s conjecture describes the contribution of a supercuspidal representation to the cohomology of a local Shimura variety in terms of the local Langlands correspondence. A natural extension of this conjecture concerns Scholze’s more general spaces of local shtukas. Using a new Lefschetz–Verdier trace formula for v-stacks, we prove the extended conjecture, disregarding the action of the Weil group, and modulo a virtual representation whose character vanishes on the locus of elliptic elements. As an application, we show that, for an irreducible smooth representation of an inner form of
$\operatorname {\mathrm {GL}}_n$
, the L-parameter constructed by Fargues–Scholze agrees with the usual semisimplified parameter arising from local Langlands.
We determine the local deformation rings of sufficiently generic mod $l$ representations of the Galois group of a $p$-adic field, when $l \neq p$, relating them to the space of $q$-power-stable semisimple conjugacy classes in the dual group. As a consequence, we give a local proof of the $l \neq p$ Breuil–Mézard conjecture of the author, in the tame case.
We study the l-adic cohomology of unramified Rapoport–Zink spaces of EL-type. These spaces were used in Harris and Taylor’s proof of the local Langlands correspondence for
$\mathrm {GL_n}$
and to show local–global compatibilities of the Langlands correspondence. In this paper we consider certain morphisms
$\mathrm {Mant}_{b, \mu }$
of Grothendieck groups of representations constructed from the cohomology of these spaces, as studied by Harris and Taylor, Mantovan, Fargues, Shin and others. Due to earlier work of Fargues and Shin we have a description of
$\mathrm {Mant}_{b, \mu }(\rho )$
for
$\rho $
a supercuspidal representation. In this paper, we give a conjectural formula for
$\mathrm {Mant}_{b, \mu }(\rho )$
for
$\rho $
an admissible representation and prove it when
$\rho $
is essentially square-integrable. Our proof works for general
$\rho $
conditionally on a conjecture appearing in Shin’s work. We show that our description agrees with a conjecture of Harris in the case of parabolic inductions of supercuspidal representations of a Levi subgroup.
In an earlier paper of Wee Teck Gan and Gordan Savin, the local Langlands correspondence for metaplectic groups over a nonarchimedean local field of characteristic zero was established. In this paper, we formulate and prove a local intertwining relation for metaplectic groups assuming the local intertwining relation for non-quasi-split odd special orthogonal groups.
Let $F$ be a non-Archimedean locally compact field of residual characteristic $p$ with Weil group ${\mathcal{W}}_{F}$. Let $\unicode[STIX]{x1D70E}$ be an irreducible smooth complex representation of ${\mathcal{W}}_{F}$, realized as the Langlands parameter of an irreducible cuspidal representation $\unicode[STIX]{x1D70B}$ of a general linear group over $F$. In an earlier paper we showed that the ramification structure of $\unicode[STIX]{x1D70E}$ is determined by the fine structure of the endo-class $\unicode[STIX]{x1D6E9}$ of the simple character contained in $\unicode[STIX]{x1D70B}$, in the sense of Bushnell and Kutzko. The connection is made via the Herbrand function $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ of $\unicode[STIX]{x1D6E9}$. In this paper we concentrate on the fundamental Carayol case in which $\unicode[STIX]{x1D70E}$ is totally wildly ramified with Swan exponent not divisible by $p$. We show that, for such $\unicode[STIX]{x1D70E}$, the associated Herbrand function satisfies a certain functional equation, and that this property essentially characterizes this class of representations. We calculate $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6E9}}$ explicitly, in terms of a classical Herbrand function arising naturally from the classification of simple characters. We describe exactly the class of functions arising as Herbrand functions $\unicode[STIX]{x1D6F9}_{\unicode[STIX]{x1D6EF}}$, as $\unicode[STIX]{x1D6EF}$ varies over the set of totally wild endo-classes of Carayol type. In a separate argument, we derive a complete description of the restriction of $\unicode[STIX]{x1D70E}$ to any ramification subgroup and hence a detailed interpretation of the Herbrand function. This gives concrete information concerning the Langlands correspondence.
We determine the parity of the Langlands parameter of a conjugate self-dual supercuspidal representation of $\text{GL}(n)$ over a non-archimedean local field by means of the local Jacquet–Langlands correspondence. It gives a partial generalization of a previous result on the self-dual case by Prasad and Ramakrishnan.
In this article we explore the interplay between two generalizations of the Whittaker model, namely the Klyachko models and the degenerate Whittaker models, and two functorial constructions, namely base change and automorphic induction, for the class of unitarizable and ladder representations of the general linear groups.
Let $G$ be a $p$-adic group that splits over an unramified extension. We decompose $\text{Rep}_{\unicode[STIX]{x1D6EC}}^{0}(G)$, the abelian category of smooth level $0$ representations of $G$ with coefficients in $\unicode[STIX]{x1D6EC}=\overline{\mathbb{Q}}_{\ell }$ or $\overline{\mathbb{Z}}_{\ell }$, into a product of subcategories indexed by inertial Langlands parameters. We construct these categories via systems of idempotents on the Bruhat–Tits building and Deligne–Lusztig theory. Then, we prove compatibilities with parabolic induction and restriction functors and the local Langlands correspondence.
We prove certain depth bounds for Arthur’s endoscopic transfer of representations from classical groups to the corresponding general linear groups over local fields of characteristic 0, with some restrictions on the residue characteristic. We then use these results and the method of Deligne and Kazhdan of studying representation theory over close local fields to obtain, under some restrictions on the characteristic, the local Langlands correspondence for split classical groups over local function fields from the corresponding result of Arthur in characteristic 0.
In a recent paper, Gross and Reeder study the arithmetic properties of discrete Langlands parameters for semi-simple -adic groups, and they conjecture that a special class of these – the simple wild parameters – should correspond to -packets consisting of simple supercuspidal representations. We provide a construction of this correspondence, and show that the simple wild -packets satisfy many expected properties. In particular, they admit a description in terms of the Langlands dual group, and contain a unique generic element for a fixed Whittaker datum. Moreover, we prove their stability on an open subset of the regular semi-simple elements, and show that they satisfy a natural compatibility with respect to unramified base-change.
We define and study a Lefschetz operator on the equivariant cohomology complex of the Drinfeld and Lubin–Tate towers. For ℓ-adic coefficients we show how this operator induces a geometric realization of the Langlands correspondence composed with the Zelevinski involution for elliptic representations. Combined with our previous study of the monodromy operator, this suggests a possible extension of Arthur’s philosophy for unitary representations occurring in the intersection cohomology of Shimura varieties to the possibly non-unitary representations occurring in the cohomology of Rapoport–Zink spaces. However, our motivation for studying the Lefschetz operator comes from the hope that its geometric nature will enable us to realize the mod-ℓLanglands correspondence due to Vignéras. We discuss this problem and propose a conjecture.
Let $F$ be a non-Archimedean local field, with the ring of integers $\mathfrak{o}_F$. Let $G = \mathrm{GL}_N(F)$, $K = \mathrm{GL}_N (\mathfrak{o}_F)$, and $\pi$ be a supercuspidal representation of $G$. We show that there exists a unique irreducible smooth representation $\tau$ of $K$, such that the restriction to $K$ of a smooth irreducible representation $\pi '$ of $G$ contains $\tau$ if and only if $\pi '$ is isomorphic to $\pi \otimes \chi \circ \det$, where $\chi$ is an unramified quasicharacter of $F^{\times}$. Moreover, we show that $\pi$ contains $\tau$ with the multiplicity 1. As a corollary we obtain a kind of inertial local Langlands correspondence.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.