Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-21T20:15:24.307Z Has data issue: false hasContentIssue false

An Iwahori theoretic mod $p$ local Langlands correspondence

Published online by Cambridge University Press:  17 February 2025

Anand Chitrao*
Affiliation:
School of Mathematics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400005, India e-mail: [email protected]

Abstract

We extend a comparison theorem of Anandavardhanan–Borisagar between the quotient of the induction of a mod $p$ character by the image of an Iwahori–Hecke operator and compact induction of a weight to the case of the trivial character. This involves studying the corresponding non-commutative Iwahori–Hecke algebra. We use this to give an Iwahori theoretic reformulation of the (semi-simple) mod $p$ local Langlands correspondence discovered by Breuil and reformulated functorially by Colmez. This version of the correspondence is expected to have applications to computing the mod $p$ reductions of semi-stable Galois representations.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Canadian Mathematical Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anandavardhanan, U. K. and Borisagar, G. H., On the $K(n)$ -invariants of a supersingular representation of $GL_2(\mathbb{Q}_p)$ . In: B. C. Berndt and D. Prasad (eds.), The legacy of Srinivasa Ramanujan, Ramanujan Mathematical Society Lecture Notes Series, 20, Ramanujan Mathematical Society, Mysore, 2013, pp. 5575.Google Scholar
Anandavardhanan, U. K. and Borisagar, G. H., Iwahori-Hecke model for supersingular representations of $GL_2(\mathbb{Q}_p)$ . J. Algebra 423(2015), 127. https://doi.org/10.1016/j.jalgebra.2014.10.003.CrossRefGoogle Scholar
Anandavardhanan, U. K. and Jana, A., Iwahori-Hecke model for $\mathit{{mod}}\;p$ representations of $GL\left(2,F\right)$ . Pacific J. Math. 315(2021), no. 2, 255283. https://doi.org/10.2140/pjm.2021.315.255.CrossRefGoogle Scholar
Arsovski, B., On the reductions of certain two-dimensional crystalline representations . Doc. Math. 26(2021), 19291979. https://doi.org/10.4171/dm/861.CrossRefGoogle Scholar
Barthel, L. and Livné, R., Irreducible modular representations of $GL_2$ of a local field . Duke Math. J. 75(1994), no. 2, 261292. https://doi.org/10.1215/S0012-7094-94-07508-X.Google Scholar
Barthel, L. and Livné, R., Modular representations of $GL_2$ of a local field: The ordinary, unramified case . J. Number Theory 55(1995), no. 1, 127. https://doi.org/10.1006/jnth.1995.1124.CrossRefGoogle Scholar
Berger, L., Représentations modulaires de $GL_2\left(\boldsymbol{Q}_p\right)$ et représentations galoisiennes de dimension 2 . Astérisque 330(2010), 263279.Google Scholar
Bhattacharya, S. and Ghate, E., Reductions of Galois representations for slopes in $\left(1,2\right)$ . Doc. Math. 20(2015), 943987. https://doi.org/10.4171/dm/510.CrossRefGoogle Scholar
Bhattacharya, S., Ghate, E., and Rozensztajn, S., Reductions of Galois representations of slope 1 . J. Algebra 508(2018), 98156. https://doi.org/10.1016/j.jalgebra.2018.04.023.CrossRefGoogle Scholar
Breuil, C., Sur quelques représentations modulaires et $p$ -adiques de $GL_2(\boldsymbol{Q}_p)$ . $I$ . Compos. Math. 138(2003), no. 2, 165188. https://doi.org/10.1023/A:1026191928449.CrossRefGoogle Scholar
Breuil, C., Sur quelques représentations modulaires et $p$ -adiques de $GL_2(\boldsymbol{Q}_p)$ . II . J. Inst. Math. Jussieu 2(2003), no. 1, 2358. https://doi.org/10.1017/S1474748003000021.CrossRefGoogle Scholar
Breuil, C., The emerging $p$ -adic Langlands programme. In: Proceedings of the international congress of mathematicians. Vol II, Hindustan Book Agency, New Delhi, 2010, pp. 203230. https://doi.org/10.1142/9789814324359_0047.Google Scholar
Buzzard, K. and Gee, T., Explicit reduction modulo $p$ of certain two-dimensional crystalline representations . Int. Math. Res. Not. IMRN 12(2009), 23032317. https://doi.org/10.1093/imrn/rnp017.Google Scholar
Buzzard, K. and Gee, T., Explicit reduction modulo $p$ of certain 2-dimensional crystalline representations, II . Bull. Lond. Math. Soc. 45(2013), no. 4, 779788. https://doi.org/10.1112/blms/bds128.CrossRefGoogle Scholar
Chitrao, A. and Ghate, E., Reductions of semi-stable representations using the Iwahori mod $p$ Local Langlands Correspondence. Submitted, 2024.Google Scholar
Colmez, P., Représentations de $GL2\left(\boldsymbol{Q}p\right)$ et $\left(\phi, \varGamma \right)$ -modules . Astérisque 330(2010), 281509.Google Scholar
Ganguli, A. and Ghate, E., Reductions of Galois representations via the $\mathit{{mod}}\;p$ local Langlands correspondence . J. Number Theory 147(2015), 250286. https://doi.org/10.1016/j.jnt.2014.07.011.CrossRefGoogle Scholar
Ghate, E., A zig-zag conjecture and local constancy for Galois representations . In: Algebraic number theory and related topics 2018. Vol. B86. RIMS Kôkyûroku Bessatsu, Research Institute for Mathematical Sciences (RIMS), Kyoto, 2021, pp. 249268.Google Scholar
Ghate, E., Zig-zag for Galois representations. Preprint, 2023.Google Scholar
Ghate, E. and Jana, A., Modular representations of $GL_2(F_q)$ using calculus. Forum Mathematicum (2024) To appear.Google Scholar
Ghate, E. and Rai, V., Reductions of Galois representations of slope $\frac{3}{2}$ . Kyoto J. Math. (2023). To appear.Google Scholar
Jana, A., The pro- $p$ -Iwahori invariants of the universal quotient representation for $GL_2(F)$ . Int. J. Number Theory 19(2023), no. 8, 18531879. https://doi.org/10.1142/S1793042123500896. CrossRefGoogle Scholar
Morra, S., Invariant elements for $p$ -modular representations of $\boldsymbol{GL}_2\left(\boldsymbol{Q}_p\right)$ . Trans. Amer. Math. Soc. 365(2013), no. 12, 66256667. https://doi.org/10.1090/S0002-9947-2013-05932-6. CrossRefGoogle Scholar
Nagel, E. and Pande, A., Reductions of modular Galois representations of Slope (2,3). Preprint, 2019.Google Scholar