Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-26T09:27:42.940Z Has data issue: false hasContentIssue false

Opérateur de Lefschetz sur les tours de Drinfeld et Lubin–Tate

Published online by Cambridge University Press:  25 January 2012

Jean-François Dat*
Affiliation:
Université Pierre et Marie Curie, 4, place Jussieu, 75005, Paris, France (email: [email protected])
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We define and study a Lefschetz operator on the equivariant cohomology complex of the Drinfeld and Lubin–Tate towers. For -adic coefficients we show how this operator induces a geometric realization of the Langlands correspondence composed with the Zelevinski involution for elliptic representations. Combined with our previous study of the monodromy operator, this suggests a possible extension of Arthur’s philosophy for unitary representations occurring in the intersection cohomology of Shimura varieties to the possibly non-unitary representations occurring in the cohomology of Rapoport–Zink spaces. However, our motivation for studying the Lefschetz operator comes from the hope that its geometric nature will enable us to realize the mod- Langlands correspondence due to Vignéras. We discuss this problem and propose a conjecture.

Type
Research Article
Copyright
Copyright © Foundation Compositio Mathematica 2012

References

[Ber90]Berkovich, V., Spectral theory and analytic geometry over non-Archimedean fields, Mathematical Surveys and Monographs, vol. 33 (American Mathematical Society, Providence, RI, 1990).Google Scholar
[Ber93]Berkovich, V. G., Étale cohomology for non-Archimedean analytic spaces, Publ. Math. Inst. Hautes Études Sci. 78 (1993), 1159.CrossRefGoogle Scholar
[Boy09]Boyer, P., Monodromie du faisceau pervers des cycles évanescents de quelques variétés de Shimura simples, Invent. Math. 177 (2009), 239280.Google Scholar
[Dat06]Dat, J.-F., Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. Éc. Norm. Supér. 39 (2006), 174.CrossRefGoogle Scholar
[Dat07]Dat, J.-F., Théorie de Lubin–Tate non-abélienne et représentations elliptiques, Invent. Math. 169 (2007), 75152.CrossRefGoogle Scholar
[Dat10]Dat, J.-F., Théorie de Lubin–Tate non-abélienne -entière, Preprint disponible à l’adresse (2010), http://www.math.jussieu.fr/∼dat/recherche/travaux.html, Duke Math. J., to appear.Google Scholar
[Dat12]Dat, J.-F., Un cas simple de correspondance de Jacquet–Langlands modulo , Proc. London Math. Soc. (2012), doi:10.1112/plms/pdr043, published online 7 December 2011.CrossRefGoogle Scholar
[Del72]Deligne, P., Les constantes des équations fonctionnelles des fonctions L, in Modular functions of one variable II, Lecture Notes in Mathematics, vol. 349 (Springer, New York, 1972), 501597.Google Scholar
[Far07]Fargues, L., Dualité de Poincaré et involution de Zelevinsky dans la cohomologie équivariante des espaces rigides (2007), http://www.math.u-psud.fr/∼fargues/Prepublications.html.Google Scholar
[Far08]Fargues, L., L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld et applications cohomologiques, in L’isomorphisme entre les tours de Lubin–Tate et de Drinfeld, Progress in Mathematics, vol. 262 (Birkhäuser, Basel, 2008), 1321.CrossRefGoogle Scholar
[HT01]Harris, M. and Taylor, R., The geometry and cohomology of some simple Shimura varieties, Annals of Mathematics Studies, vol. 151 (Princeton University Press, Princeton, NJ, 2001).Google Scholar
[Kur80]Kurihara, A., Construction of p-adic unit balls and the Hirzebruch proportionality, Amer. J. Math. 102 (1980), 565648.CrossRefGoogle Scholar
[SS95]Schneider, P. and Stuhler, U., Representation theory and sheaves on the Bruhat–Tits building, Publ. Math. Inst. Hautes Études Sci. 85 (1995), 97191.CrossRefGoogle Scholar
[SGA41/2]Cohomologie étale, in Séminaire de géométrie algébrique du Bois–Marie SGA41/2, P. Deligne, avec la collaboration de J. F. Boutot, A. Grothendieck, L. Illusie et J. L. Verdier, Lecture Notes in Mathematics, vol. 569 (Springer, Berlin, 1977).Google Scholar
[SGA5]Cohomologie l-adique et fonctions L, in Séminaire de géometrie algébrique du Bois–Marie 1965–1966 (SGA5), edité par L. Illusie, Lecture Notes in Mathematics, vol. 589 (Springer, Berlin, 1977).Google Scholar
[Vig96]Vignéras, M. F., Représentations l-modulaires d’un groupe p-adique avec l différent de p, Progress in Mathematics, vol. 137 (Birkhäuser, Basel, 1996).Google Scholar
[Vig97]Vignéras, M.-F., Cohomology of sheaves on the building and R-representations, Invent. Math. 127 (1997), 349373.Google Scholar
[Vig98]Vignéras, M.-F., Induced R-representations of p-adic reductive groups, Selecta Math. (N.S.) 4 (1998), 549623.CrossRefGoogle Scholar
[Vig01]Vignéras, M.-F., Correspondance de Langlands semi-simple pour GL(n,F) modulo p, Invent. Math. 144 (2001), 177223.CrossRefGoogle Scholar
[Yos10]Yoshida, T., On non-abelian Lubin–Tate theory via vanishing cycles, in Algebraic and arithmetic structures of moduli spaces (Sapporo 2007), Advanced Studies in Pure Mathematics, vol. 58 (Mathematical Society of Japan, Tokyo, 2010), 361402.CrossRefGoogle Scholar
[Zel80]Zelevinski, A. V., Induced representations on reductive p-adic groups II, Ann. Sci. Éc. Norm. Supér. 13 (1980), 165210.CrossRefGoogle Scholar