We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
After reviewing YM superfields in rigid superspace, we defined them in curved superspace. We define invariant measures for the superspace actions, and finally describe supergravity actions. Then, we discuss couplings of supergravity with matter, describing things first in superspace and then in components.
Let $f(z)=z^2+c$ be an infinitely renormalizable quadratic polynomial and $J_\infty $ be the intersection of forward orbits of ‘small’ Julia sets of its simple renormalizations. We prove that if f admits an infinite sequence of satellite renormalizations, then every invariant measure of $f: J_\infty \to J_\infty $ is supported on the postcritical set and has zero Lyapunov exponent. Coupled with [13], this implies that the Lyapunov exponent of such f at c is equal to zero, which partly answers a question posed by Weixiao Shen.
For $\mathscr {B} \subseteq \mathbb {N} $, the $ \mathscr {B} $-free subshift $ X_{\eta } $ is the orbit closure of the characteristic function of the set of $ \mathscr {B} $-free integers. We show that many results about invariant measures and entropy, previously only known for the hereditary closure of $ X_{\eta } $, have their analogues for $ X_{\eta } $ as well. In particular, we settle in the affirmative a conjecture of Keller about a description of such measures [G. Keller. Generalized heredity in $\mathcal B$-free systems. Stoch. Dyn.21(3) (2021), Paper No. 2140008]. A central assumption in our work is that $\eta ^{*} $ (the Toeplitz sequence that generates the unique minimal component of $ X_{\eta } $) is regular. From this, we obtain natural periodic approximations that we frequently use in our proofs to bound the elements in $ X_{\eta } $ from above and below.
We describe two kinds of regular invariant measures on the boundary path space $\partial E$ of a second countable topological graph E, which allows us to describe all extremal tracial weights on $C^{*}(E)$ which are not gauge-invariant. Using this description, we prove that all tracial weights on the C$^{*}$-algebra $C^{*}(E)$ of a second countable topological graph E are gauge-invariant when E is free. This in particular implies that all tracial weights on $C^{*}(E)$ are gauge-invariant when $C^{*}(E)$ is simple and separable.
Let G be a countable residually finite group (for instance, ${\mathbb F}_2$) and let $\overleftarrow {G}$ be a totally disconnected metric compactification of G equipped with the action of G by left multiplication. For every $r\geq 1$, we construct a Toeplitz G-subshift $(X,\sigma ,G)$, which is an almost one-to-one extension of $\overleftarrow {G}$, having r ergodic measures $\nu _1, \ldots ,\nu _r$ such that for every $1\leq i\leq r$, the measure-theoretic dynamical system $(X,\sigma ,G,\nu _i)$ is isomorphic to $\overleftarrow {G}$ endowed with the Haar measure. The construction we propose is general (for amenable and non-amenable residually finite groups); however, we point out the differences and obstructions that could appear when the acting group is not amenable.
We obtain bounds for an a priori unknown rate function. We prove the existence and uniqueness of invariant probability measures and the necessity of irreducibility.
Given a dynamical simplex K on a Cantor space X, we consider the set
$G_K^*$
of all homeomorphisms of X which preserve all elements of K and have no non-trivial clopen invariant subset. Generalizing a theorem of Yingst, we prove that for a generic element g of
$G_K^*$
the set of invariant measures of g is equal to K. We also investigate when there exists a generic conjugacy class in
$G_K^*$
and prove that this happens exactly when K has only one element, which is the unique invariant measure associated to some odometer; and that in that case the conjugacy class of this odometer is generic in
$G_K^*$
.
Assuming positive entropy, we prove a measure rigidity theorem for higher rank actions on tori and solenoids by commuting automorphisms. We also apply this result to obtain a complete classification of disjointness and measurable factors for these actions.
The box-ball system (BBS) was introduced by Takahashi and Satsuma as a discrete counterpart of the Korteweg-de Vries equation. Both systems exhibit solitons whose shape and speed are conserved after collision with other solitons. We introduce a slot decomposition of ball configurations, each component being an infinite vector describing the number of size k solitons in each k-slot. The dynamics of the components is linear: the kth component moves rigidly at speed k. Let
$\zeta $
be a translation-invariant family of independent random vectors under a summability condition and
$\eta $
be the ball configuration with components
$\zeta $
. We show that the law of
$\eta $
is translation invariant and invariant for the BBS. This recipe allows us to construct a large family of invariant measures, including product measures and stationary Markov chains with ball density less than
$\frac {1}{2}$
. We also show that starting BBS with an ergodic measure, the position of a tagged k-soliton at time t, divided by t converges as
$t\to \infty $
to an effective speed
$v_k$
. The vector of speeds satisfies a system of linear equations related with the generalised Gibbs ensemble of conservative laws.
We prove that for any countable group $\unicode[STIX]{x1D6E4}$, there exists a free minimal continuous action $\unicode[STIX]{x1D6FC}:\unicode[STIX]{x1D6E4}\curvearrowright {\mathcal{C}}$ on the Cantor set admitting an invariant Borel probability measure.
In this paper we discuss various aspects of invariant measures for nonlinear Hamiltonian partial differential equations (PDEs). In particular, we show almost-sure global existence for some Hamiltonian PDEs with initial data of the form ‘a smooth deterministic function + a rough random perturbation’ as a corollary to the Cameron–Martin theorem and known almost-sure global existence results with respect to Gaussian measures on spaces of functions.
Various $p$-adic versions of Littlewood's conjecture are investigated, generalizing a set-up considered recently by de Mathan and Teulié. In many cases it is shown that the sets of exceptions to these conjectures have Hausdorff dimension zero. The proof follows the measure ridigity approach of Einsiedler, Katok and Lindenstrauss.
We study ergodic properties of a family of interval maps that are given as the fractional parts of certain real Möbius transformations. Included are the maps that are exactly $n$-to-1, the classical Gauss map and the Renyi or backward continued fraction map. A new approach is presented for deriving explicit realizations of natural automorphic extensions and their invariant measures.
We consider a stochastic version of the Ricker model describing the density of an unstructured isolated population. In particular, we investigate the effects of independently varying the per capita growth rate and the parameter governing density dependent feedback. We derive conditions on the distributions sufficient to guarantee different forms of stochastic stability such as null recurrence or positive recurrence. We find, for example, that null recurrence appears in two widely different scenarios: when there is a mean-zero growth rate or via a growth-catastrophe behaviour.
Lenin et al. (2000) recently introduced the idea of similarity in the context of birth-death processes. This paper examines the extent to which their results can be extended to arbitrary Markov chains. It is proved that, under a variety of conditions, similar chains are strongly similar in a sense which is described, and it is shown that minimal chains are strongly similar if and only if the corresponding transition-rate matrices are strongly similar. A general framework is given for constructing families of strongly similar chains; it permits the construction of all such chains in the irreducible case.
Let P be the transition matrix of a positive recurrent Markov chain on the integers, with invariant distribution π. If (n)P denotes the n x n ‘northwest truncation’ of P, it is known that approximations to π(j)/π(0) can be constructed from (n)P, but these are known to converge to the probability distribution itself in special cases only. We show that such convergence always occurs for three further general classes of chains, geometrically ergodic chains, stochastically monotone chains, and those dominated by stochastically monotone chains. We show that all ‘finite’ perturbations of stochastically monotone chains can be considered to be dominated by such chains, and thus the results hold for a much wider class than is first apparent. In the cases of uniformly ergodic chains, and chains dominated by irreducible stochastically monotone chains, we find practical bounds on the accuracy of the approximations.
In a recent paper [16], one of us identified all of the quasi-stationary distributions for a non-explosive, evanescent birth-death process for which absorption is certain, and established conditions for the existence of the corresponding limiting conditional distributions. Our purpose is to extend these results in a number of directions. We shall consider separately two cases depending on whether or not the process is evanescent. In the former case we shall relax the condition that absorption is certain. Furthermore, we shall allow for the possibility that the minimal process might be explosive, so that the transition rates alone will not necessarily determine the birth-death process uniquely. Although we shall be concerned mainly with the minimal process, our most general results hold for any birth-death process whose transition probabilities satisfy both the backward and the forward Kolmogorov differential equations.
Let X be a birth and death process on with absorption at zero and suppose that X is suitably recurrent, irreducible and non-explosive. In a recent paper, Roberts and Jacka (1994) showed that as T → ∞ the process conditioned to non-absortion until time T converges weakly to a time-homogeneous Markov limit, X∞, which is itself a birth and death process. However the question of the possibility of explosiveness of X∞ remained open. The major result of this paper establishes that X∞ is always non-explosive.
This paper continues our investigation of backward continued fractions, associated with the generalized Renyi maps on [0,1). We first show that the dynamics of the shift map on a specific class of shift invariant spaces of nonnegative integer sequences exactly models the maps Tu for u € (0,4). In the second part we construct a new family of explicit invariant measures for certain values of the parameter u.