We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
Online ordering will be unavailable from 17:00 GMT on Friday, April 25 until 17:00 GMT on Sunday, April 27 due to maintenance. We apologise for the inconvenience.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
The fusion of multi-sensor data can provide more accurate and reliable navigation performance than single-sensor methods. However, the general Federated Kalman Filter (FKF) is not suitable for large changes of complex nonlinear systems parameters and is not optimized for effective information sharing coefficients to estimate navigation preferences. This study concerns research on the FKF method for a nonlinear adaptive model based on an improved Genetic Algorithm (GA) for the Strapdown Inertial Navigation System (SINS) / Celestial Navigation System (CNS) / Global Positioning System (GPS) integrated multi-sensor navigation system. An improved fitness function avoids the premature convergence problem of a general GA and decimal coding improves its performance. The improved GA is used to build the adaptive FKF model and to select the optimized information sharing coefficients of the FKF. An Unscented Kalman Filter (UKF) is used to deal with the nonlinearity of integrated navigation system. Finally, a solution and implementation of the system is proposed and verified experimentally.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.