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The fusion of multi-sensor data can provide more accurate and reliable navigation
performance than single-sensor methods. However, the general Federated Kalman Filter
(FKF) is not suitable for large changes of complex nonlinear systems parameters and is not
optimized for effective information sharing coefficients to estimate navigation preferences.
This study concerns research on the FKF method for a nonlinear adaptive model based on an
improved Genetic Algorithm (GA) for the Strapdown Inertial Navigation System (SINS) /
Celestial Navigation System (CNS) / Global Positioning System (GPS) integrated multi-
sensor navigation system. An improved fitness function avoids the premature convergence
problem of a general GA and decimal coding improves its performance. The improved GA is
used to build the adaptive FKF model and to select the optimized information sharing
coefficients of the FKF. An Unscented Kalman Filter (UKF) is used to deal with the
nonlinearity of integrated navigation system. Finally, a solution and implementation of the
system is proposed and verified experimentally.
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1. INTRODUCTION. With the rapid development of information technol-
ogy, the precision strike capability of long-range weapon systems is gradually
becoming more intelligent and efficient. One of the key techniques, which is also an
impediment, is the development of a high-precision navigation system which can
supply high-precision information on the motion states of modern aircraft and
missiles. At present, integrated multi-navigation systems, which can take full
advantage of different types of navigation systems that process integrated multi-
sensors information, are the only way of achieving high precision navigation.
The developmental research of (Quan et al., 2011; Mohinder et al., 2007;

Robert, 2007) on integrated multi-sensor navigation systems has attracted worldwide
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attention. The integration of a Strapdown Inertial Navigation System (SINS) with a
Global Positioning System (GPS) (Kim et al., 1998; Kim et al., 2009; Francois et al.,
2006) has received much attention for providing this performance augmentation, but
GPS receivers are vulnerable to the effects of jamming which can vary from complete
loss of data, to reduced tracking performance and degraded navigational accuracy.
Nevertheless, the performance objectives of navigation systems do not have to be
vulnerable to dependence on GPS data. To overcome this possible problem, a
Celestial Navigation System (CNS) has been integrated with the SINS/GPS (Leonid,
2007; Ali, 2006; Xu and Fang, 2008) to provide a high-performance autonomous
mission capability. To achieve the long duration mission accuracy and reliability
requirements necessary for navigation systems, the GPS and CNS measurements are
fused with the SINS to provide a best estimate of the navigation information. This
SINS/CNS/GPS integrated multi-sensor navigation system offers a more reliable,
robust and possibly more accurate navigation solution than that provided by any
single system (Wang et al, 2004).
However, in practical applications, the noise model parameters of a SINS/CNS/

GPS integrated multi-sensor navigation system will alter because of external
destabilization and changes in the complex flight environment, which require the
filtering capability of a complex nonlinear system (Wang et al., 2004). Multi-sensor
integrated navigation systems, which can deal with this problem effectively, have the
potential of achieving high levels of accuracy and fault-tolerance. The presence of
multiple data sources provides functional redundancy as well as greater observability
of the desired navigation states. Multi-sensor integration techniques are used in many
tracking and surveillance systems as well as in applications where the fidelity of the
system is a foremost concern (Ali and Fang, 2005b).
One method for the design of such systems is to make use of a number of sensors

and to blend the information obtained from them in a central processor. The Kalman
filter with a centralized structure in multi-sensor situations is relied on in many
applications such as military surveillance, air traffic control and mobile robots. Target
tracking using multiple sensors can offer improved functionality over a single sensor.
Previous attempts to develop multi-sensor integration algorithms for a centralized
architecture, in which measurements from all the sensors are sent to a central
processor, have shown that significant gains in performance are possible.
However, if multi-sensor systems are to be able to process their data in real-time,

the performance of a centralized Kalman filter needs to be improved. The Federated
Kalman Filter (FKF) configuration was contemplated as another approach for data
fusion in (Paik and Oh, 2000). It is recognized that the FKFs have the advantages of
simplicity and fault-tolerance over other decentralized filter techniques. The FKF
method based on meticulous information-sharing principles makes available globally
optimal or near-optimal estimation accuracy with a high degree of fault tolerance. The
federated filter structure employs sensor-dedicated Local Filters (LFs) and a Master
Filter (MF) to combine or fuse the LFs outputs. There are many methods for selecting
and optimizing the information sharing coefficients of the FKF, such as the adaptive
algorithm, neural network and Genetic Algorithm (GA). The adaptive algorithms
have the advantages of simplicity and high efficiency, but are not highly adaptable to
complicated surroundings. A neural network is usually used to build a model of an
integrated navigation system, but is not suitable for optimization. The GA is a
derivative-free stochastic optimization method based loosely on the concepts of
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natural selection in a parallel searching mechanism, which has high adaptability and is
suitable for optimization.
In this study, the GA is adopted and improved. One of the main contributions of the

study is the implementation of a multi-sensor navigation system using FKF with
information sharing coefficients optimized by an improved GA. This improved GA
algorithm avoids the premature convergence problem of a general GA by improving
the fitness function, takes advantage of decimal-coding to improve both the speed and
accuracy of calculation, and is used to build the FKF model through analysing the
model parameters of the reference-system and local-filters.
The other main contribution of this study is that a solution and realization of a high

performance SINS/CNS/GPS integrated multi-sensor navigation system is proposed
using the design of hardware-functional modularization and software-flow inte-
gration. The experiment is performed using this improved FKF on the SINS/CNS/
GPS integrated multi-sensor navigation system. In addition, an Unscented Kalman
Filter (UKF) is used to deal with the nonlinearities of the integrated navigation
system.
The experimental results show that, with the same experimental conditions, the

estimated errors are very good when using the proposed method. The estimated 3-axis
attitude errors are less than 2″, the estimated 3-axis position errors are less than 1 m and
the estimated 3-axis velocity errors are approximately 0·04 m/s. These errors are 0·25,
0·4 and 0·5 times the corresponding errors estimated by the traditional FKF. When
estimating the effect of the gyro errors and accelerometers biases, the fluctuating extent
of the estimated value of the gyro errors is smaller than that of the traditional FKF and
the rapidity of convergence to the estimated value is quicker. The estimated gyro errors
are up to 0·02°/h using 140 s while the FKF only achieves 0·025°/h using about 280 s.
When estimating the accelerometer biases, the two methods have the same level of
convergence rapidity but the fluctuating extent of the estimated value is different.
In total, the FKF based on the improved GA not only significantly increases the

navigation system’s accuracy and reliability, but also has quick rapidity of
convergence compared with the traditional FKF algorithm.

2. SINS/CNS/GNSS INTEGRATED NAVIGATION MODEL.
2.1. Coordinate Frames. Definitions of the coordinate frames in the study are

given as follows:

. The launch inertial frame (li-frame) has its origin at the launch point. Its x-axis is
horizontal and perpendicular to the nominal launch plane, toward the right, its
y-axis is horizontal and lies in the nominal launch plane; its z-axis is vertical
upward and normal to the reference ellipsoid.

. The geocentric inertial frame (i-frame) has its origin at the centre of the Earth and
is non-rotating with respect to the fixed stars. Its x-axis is in the equatorial plane
and points the vernal equinox point, its z-axis is normal to that plane; its y-axis
complements the right-handed system.

. The body frame (b-frame) has its origin at the centre of mass of the vehicle. Its
x-axis points along the longitudinal axis of the vehicle, its z-axis is perpendicular
to the longitudinal plane of symmetry; its y-axis complements the right-handed
system.
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2.2. Error Model (Quan et al., 2011).
2.2.1. Attitude Error Model. Attitude error analysis establishes the relationship

between different frames. Here, c and p refer to the computed and analytical platform
frame. It is obvious that indirectly ‘c’ follows ‘li’, and ‘p’ follows ‘c’ and ‘li’. There is
misalignment between the ‘li’ and ‘p’ frames which is expressed by the angles φx, φy, φz.
Therefore, the estimated attitude matrix Cb

p from the SINS is expressed as:

Ĉ
li
b = Cp

liC
li
b = Cp

b (1)

The attitude error in the space-stabilized SINS mechanization is the orthogonal
transformation error between the b- and li-frames. In this perspective, the attitude
error equation can be depicted as a nonlinear attitude error model of the SINS. For
large attitude errors, the relationship between the p- and li-frames is obtained by three
successive rotations of the li-frame using the misalignment angles φx, φy, φz about the
x, y and z axes expressed by:

Cp
li =

cosϕz cosϕy sinϕz cosϕx + cosϕz sinϕy sinϕx sinϕz sinϕx − cosϕz sinϕy cosϕx
−sinϕz cosϕy cosϕz cosϕx − sinϕz sinϕy sinϕx cosϕz sinϕx + sinϕz sinϕy cosϕx

sinϕy −cosϕy sinϕx cosϕy cosϕx







(2)
The angular velocity of the mathematical p-frame relative to the i-frame is equal to

the sum of the angular velocity of the li-frame relative to the i-frame and the angular
velocity of the p-frame relative to the li-frame. This relationship is described by:

ωp
ip = ωp

ili + ωp
lip (3)

where ωp
lip represents the angular rate of the li-frame through the axes misalignment

angles (i.e., ωp
ili = Cp

liω
li
ili. ω

li
ili = 0 because the i- and li-frames are inertially fixed).

Thus, ˙ϕ
li = ωp

ip.
In the above relationship, ωp

ip = Cp
bε

b in which εb = εbc + εbr , where εbc and εbr
represent the gyro’s constant and random drifts. Thus:

ˆ̇
ϕ
li = ˙ϕ

p = Ĉ
li
b(εbc + εbr ) = Cp

liC
li
b (εbc + εbr ) (4)

2.2.2. Velocity Error and Position Error Model. The velocity error in the space-
stabilized mechanization is given as:

δv̇li = f
li × ϕ

li + Cli
b (∇

b + wb
a) + Cli

i δg
i (5)

where:

f
li
is the specific force measured by the accelerometer.

Cli
i is a constant transformation matrix between the indicated frames.

δgi is the acceleration error caused by gravity.
∇b

and wb
a represent the accelerometer constant and random biases, the subscript a

stands for accelerometer, and×represents the cross product.

While deriving an expression for the acceleration error caused by gravity, the
inverse square gravity model is considered for the spherical Earth model. The gravity
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model used in the derivation of the error equation is given by:

ḡi =
gx
gy
gz





 = − μ

r3

{1+ 3
2J2(re/r)2[1− 5(riz/r)2]}rix

{1+ 3
2J2(re/r)2[1− 5(riz/r)2]}riy

{1+ 3
2J2(re/r)2[3− 5(riz/r)2]}riz





 (6)

where:

μ=(3·9860305±3×10−7)×1014[m3/s2].

r =
����������������������
(rix)2 + (riy)2 + (riz)2

√
; rix, r

i
y, r

i
z are components of the position vector.

J2 is a second-order harmonic constant coefficient and its value is
(1·08230±0·0002)×10−3.

re is the Earth’s equatorial radius which is equal to 6378137m.

The quantities μ, J2 and re are specific to the reference inertial frame for the SINS
space-stabilized mechanization.
The gravity gradient δgi for a two body gravity field can be formulated as follows:

δgi = ∂gi

∂ri
δri =

∂gix/∂r
i
x ∂gix/∂r

i
y ∂gix/∂r

i
z

∂giy/∂r
i
x ∂giy/∂r

i
y ∂giy/∂r

i
z

∂giz/∂r
i
x ∂giz/∂r

i
y ∂giz/∂r

i
z







δrix
δriy
δriz







=
g11 g12 g13
g21 g22 g23
g31 g32 g33







δrix
δriy
δriz







(7)

where, gij(i,j=1,2,3) is given in reference (Quan et al., 2011).
The position error in rectangular coordinates is as follows:

δṙli = δvli (8)

3. DESIGN OF FKF BASED ON IMPROVED GA.
3.1. FKF and Its Information Sharing. FKF is a partitioned estimation method

that employs a two stage data processing architecture, in which the outputs of the
sensor related LFs are subsequently combined by a large MF (Carlson and
Berarducci, 1994). As indicated, each LF is dedicated to a separate sensor subsystem
and uses data from the traditional reference SINS. The SINS acts as a fundamental
sensor in the system and its data is the measurement input for the MF. The data from
the GPS and the CNS are dedicated to the corresponding LFs, and after
implementation, supply their resulting solutions to the MF for the master update,
yielding a global solution (Gao et al., 1993). The FKF avoids the theoretical and
practical difficulties of standard Kalman filtering by means of a simple, yet effective,
information sharing methodology. The advantages of information sharing
implemented within the federated filter are increased data throughput by the parallel
operation of the LFs, enhanced system fault-tolerance by retaining multiple
component solutions, and improved accuracy and stability of cascaded filter
operations (Carlson, 1990; Carlson, 1996). The basic concept of the information
distribution approach in the FKF is to divide all the system information among the
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LFs, perform local time propagation and measurement processing, and then
recombine the updated local information into a new total sum.
Applying the maxim of conservation to the estimated error covariance, results

in information sharing between the filters. The information residing in the estimated
error covariance can be construed to be the memory of the filter system. To remain
optimal, the filter must combine the local estimation into a single estimate
every cycle. After the combination step, at the start of the next cycle, the estimation
or memory can be fed back to the LFs with the MF retaining part or none of
the information. At this point, all the estimates in the system are equal and the
information is distributed. If feedback is implemented, conservation of information
simply dictates that the net sum of the information in the filter system before and
after the feedback operation must remain the same. However, every feedback
operation requires an adjustment of the covariance to reflect information sharing. In
general, when the information is redistributed among the LFs and MFs, the sum of
the LF and MF matrices after feedback must equal the MF information before
feedback. In the FKF implementation, the system dynamic model is applied to each
filter, but the statistical weight of the dynamics driving noise is distributed such that
information is preserved. The individual LFs are considered sub-optimal for this
reason. The LFs are then combined to give an optimal global estimate through the
MF. Our aim is to find the optimal information sharing coefficients for the FKF. The
GA is a robust, domain-independent mechanism for optimization and has a high
probability of finding optimal solutions in large and complex nonlinear spaces.
Consequently it is a good method for finding the optimal information sharing
coefficients.

3.2. Improved Genetic Algorithm. The general GA is a derivative-free stochastic
optimization method based loosely on the concepts of natural selection, which
distinguish themselves from many other optimization methods by their parallel
searching mechanism. They work with the coding of the parameter set, not the
parameters themselves. The optimization process with a GA is depicted in (Yang,
1999). First, to make it easier to evaluate and choose results, the GA constructed
fitness function is based on all the requirements. Thereafter, the GA adopts a real-
coded mode and selects a suitable initial individual. An individual structure is then
created randomly. With that, each individual filter is evaluated. Secondly, they are
operated by three main operators: reproduction, crossover, and mutation, to create a
better individual filter. Each individual filter is assigned a ‘fitness score’ according to
how good the solution is. Only individual filters that are competitive (according to
their fitness values) get the chance to survive long enough to produce offspring by
crossover and mutation and thus to transfer their genetic material to the next
generation. If the termination criteria are not met, the individual filter is operated on
by the above three operators and evaluated again. This procedure is continued until
the termination criteria are met.Considering the slow executing speed and premature
convergence problem in calculating the fitness of the general GA, the fitness function
and the coding are improved in this study.

3.2.1. Improved Fitness Function. In general, GAs depend on a fitness function
to simulate natural selection, which decides various genetic operations by calculating
the fitness value for each individual filter. Therefore, the fitness function is closely
related to convergence speed and accuracy of the GA. The practice of defining a fitness
function can be thought of as follows: suppose that the population size is S, sample
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numbers areN, genetic generations areG, the algorithm calculates the summary of the
variance between the theoretical and experimental values with individual K(i)
(1< i<S ) and takes it as the performance index B(i,t) of the individual filter K(i) in
the tth (1< t<G) generation.

B(i, t) =
∑N
j=1

(S(i, j) − C( j))2 (9)

where:

S(i,j) is the theoretical value of sample j (1< j<N )with the individual filter K(i).
C( j) is the experimental value of sample j.

Based on the performance B(i,t), this study defines the fitness function of the
GAs as:

f (i, t) = 1
B(i, t) + 10−10 (10)

To avoid premature convergence in calculating fitness, the performance index sum
of all individual filters in the current generation T(t) is calculated as
T(t) = ∑S

i=1 B(i, t). With the individual filter size S, the algorithms then diverge
and converge to the performance index of each individual filter in accordance with
B′(i,t)= (S×B(i,t))/T(t). Finally, we have the eventual fitness function:

f (i, t) = 1
B′(i, t) + 10−10 (11)

3.2.2. Real Number Coding. The two coding schemes for a general GA are
binary and real number coding. Considering the conventional binary code, genetic
algorithms must encode and decode in solving continuous optimization problems, so
they have a definite influence upon computing speed and accuracy. Since in a physical
world, most optimization problems involve real-valued parameters, it is better to
manipulate them directly in the original real-valued space instead of the discretized
space. Moreover, real-coded GAs not only cancel out the process of encoding and
decoding but also improve the efficiency and stability of a general GA. A real-coded
GA has a distinct advantage in parameter optimization.

3.3. FKF Based on the Improved GA for a SINS/CNS/GPS Integrated Multi-
sensors Navigation System. The SINS/CNS/GPS integrated multi-sensor navigation
system comprises one main system and two sub-systems. The SINS acts as a
fundamental sensor (main system) in the system, and its data is the measurement input
for the MF. The data from the GPS (sub system 1) and the CNS (sub system 2) is
dedicated to corresponding LFs and, after implementation, supply their resulting
solutions to the MF for a time update and optimization fusion (Li et al., 2002). The
frame of the FKF based on the improved GA is shown in Figure 1.
The primary sensor subsystems used in the integrated multi-sensor navigation

system are the SINS, CNS and GPS. The SINS used in the simulation generates
position, velocity and attitude information, the CNS provides attitude information,
while the GPS outputs position and velocity solutions. The purpose of the integrated
system is to achieve increased accuracy and improved estimates of the SINS error
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sources. The CNS provides the attitude of the vehicle that is combined with the SINS
attitude information to output an observation to the LF1 (Unscented Kalman Filter1:
UKF1). Velocity and position information available from the GPS in conjunction
with the SINS yields observations to the LF2 (UKF2).
Suppose that the state and measurement equations of the main system are given by:

Xk = f (Xk−1) + Gk−1Wk−1 (12)
Zk = Hk(Xk) + Vk (13)

where Wk−1 and Vk are the uncorrelated Gaussian white noise sequences with the
covariance as Qk, Rk.
The state and measurement equations of the subsystem are as follows:

Xi,k = f (Xi,k−1) + Gi,k−1Wi,k−1 (14)
Zi,k = Hi,k(Xi,k) + Vi,k (15)

where:

i represents the corresponding measurement sources for the LFs, i=1, 2 . . .N.
Wi,k−1 and Vi,k are the uncorrelated Gaussian white noise sequences with

covariance Qi,k,Ri,k.

Suppose that Zk = ZT
1,k,Z

T
2,k, · · · ,ZT

N,k

[ ]T
and LFs are uncorrelated. Then,

Xg = Pg

∑N
i=1

P−1
ii Xi,Pg =

∑N
i=1

P−1
ii

( )−1

(16)

where:

Pg is the covariance matrix of the global FKF.
Pii is the covariance matrix of the ith LF.

SINS

GPS

CNS

LF 2
UKF2

LF1
UKF1

MF

Time Update

Optimization fuse

1Z

2Z

11,ˆ PX

22 ,ˆ PX

gg PX 1
1,ˆ −β

gg PX 1
2,ˆ −β

mm PX ,ˆ
gm

g

P

X
1

ˆ

−β
gg PX ,ˆ

Improved GA mm PX ,ˆ

Figure 1. FKF based on the improved GA configuration of a SINS/CNS/GPS integrated multi-
sensors navigation system.
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The covariance matrix and its propagation in time are vital in both describing and
analysing physical test results and comparing them to theoretical predictions. This
number is a significant indication of the overall performance of the system and is often
employed as a ‘metric to minimize’ when making decisions about how to consider the
navigation data. To solve state space system error equations, the covariance matrix is
propagated continuously so that error estimates and covariance are available at the
discrete time when the measurements transpire (Daniel, 1999).
The estimation of the LFs is correlated because they use a common dynamic system.

To eliminate this correlation, the process noise and the state vector covariance are set
to their upper bounds:

Q−1 =
∑N
i=1

βiQ
−1
i + βmQ

−1, i = 1, 2, . . . ,N,m (17)

P−1 =
∑N
i=1

βiP
−1
i + βmP

−1, i = 1, 2, . . . ,N,m (18)

where βi(≥0) is an information sharing coefficient, and:

β1 + β2 + . . .+ βN + βm = 1 (19)

For the time update equations and the measurement update equations for the LFs
refer to reference (Ali and Fang, 2005b). The information sharing coefficients are
selected by the estimated error covariance of the LFs. The information residing in the
estimated error covariance can be construed to be the memory of the filter system. To
remain optimal, the filter must combine the local estimates into a single estimate every
cycle. After the combination step, at the start of the next cycle, the estimate or memory
can be fed back to the LFs with theMF retaining a part or none of the information. At
this point, all estimates in the system are equal and the information is distributed. If
feedback is implemented, conservation of information simply dictates that the net sum
of the information in the filter system before and after the feedback operation must
remain the same. However, every feedback operation requires an adjustment of the
covariance to reflect information sharing.
In general, when the information is redistributed about the LFs and MFs, the

sum of the local and MF matrices after feedback must be equal to the MF
information before feedback. The simplest form of parametric control is to choose
parameters βi and βm with a summation of one, and set the error covariance of the
individual filter and MFs after feedback equal to βi and βm times the MF covariance
before feedback. In our real-coded GA, individual filters are directly composed of real
type original variables of the regression model (β1 β2 . . . βN) and haveN chromosomes.
Parameter N of the above content is set to 2. In this FKF based on the improved GA,
a quaternion is obtained from the corrected attitude matrix and is fed back for attitude
error compensation. Similarly, the estimated velocity and position error states are used
for velocity and position error compensation. The effective method that improved the
GA determines the optimized information sharing coefficients for the FKF to
accomplish good navigation results.
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Considering the SINS/CNS/GPS integrated multi-sensor navigation system, we
suppose that the state vectors for the LFs are the same as the MF:

x1 = x2 = xm = ϕi, δvi, δri, εi,∇i
[ ]T

, i = x, y, z (20)
We select the information sharing coefficients using the improved GA. Using the

fitness function, as follows:

f (βt) = W1(Q−1 −
∑N
i=1

βiQ
−1
i −βmQ

−1) +W2 P−1 −
∑N
i=1

βiP
−1
i −βmP

−1

( )
(21)

where:

β1+β2+βm=1.
βt is the calculated information-sharing coefficient of the tth generation.
W1, W2 are the regulated power dependent on the Q and P.

The algorithms then set the evaluated fitness of each individual filter for the current
generation in ascending order and the relative individual filter is correspondingly
ordered. Consequently the improved GA determines the best fitness. If the best fitness
satisfies the given conditions, the improved GA finds out the relative best individual
filter and exports it as the optimum solution. After that, the calculation is ended and
the present optimum solution becomes the final optimization result of the improved
GA.

4. EXPERIMENTAL RESULTS.
4.1. Hardware & Software Design for the SINS/CNS/GPS Integrated Multi-

sensors Navigation System. Considering the versatility, agility and transportability
of the algorithms, this FKF based on the improved GA for the SINS/CNS/GPS
integrated multi-sensor navigation system should have the features of low cost and
high efficiency, and also retain the design and realization ideas of hardware-function
modularization and software-flow integration.

4.1.1. Hardware Design. Considering the integrated design, the whole hardware
system is divided into the devices, component and system layers. Each layer integrates
downward, and supplies testing and functional verification to the upper layer at the
same time. The system is connected by multifunction ports between the layers. In this
way, changing the elements in each layer, while ensuring the coherence of the interface
protocol, will not affect the other layers, sequentially realizing the versatility of the
hybrid simulation system. In addition, both the devices and components layers have
pre-formed interfaces, which enhance the expandability of the system. The devices
layer includes the elements of inertia measurement that consist of an Optical Fibre
Gyro Accelerometer (OFGA), TFT Liquid Crystal Light Valve (LCLV) star atlas
simulator (Roelfo and Van, 1994; Quan and Fang, 2005), Charge Coupled Device
(CCD) star sensor device, GPS Receiver and a preformed interface. The components
layer consists of a Trajectory Generator Module (TGM), Strapdown Inertial
Navigation Module (SINM), Celestial Navigation Module (CNM), GPS Module
(GPSM), Peripheral Processing Module (PPM) and a Preformed Interface Module
(PIM).The system layer consists of an integrated multi-sensor navigation and
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performance testing system. The entire layers of the hardware system are shown in
Figure 2.

4.1.2. Software Design. Considering the versatility, flexibility and portability
of the hybrid simulation of a SINS/CNS/GPS integrated multi-sensor navigation
system, the design of each part possesses its own characteristics as well as adopting a
universal exploitation environment, which realizes the functional integrated design. In
this way, the system can be exploited expediently and carried out with a hybrid
simulation experiment. The flow diagram of the entire software system is show in
Figure 3.
First, the hardware and software of the system are initialized, and performance-

testing parameters are set for integrated multi-sensor navigation. Secondly, after
obtaining data from the SINS, if it is available, the ‘proceed’ performance mode will
be decided; otherwise the systems wait for the next SINS data. The next step
determines whether it is in the‘integrated’ mode, which depends on whether CNS
and GPS data have been received. The adaptive FKF together with the Improved
GA module and the Strapdown Inertial Navigation (SIN) module are then
performed to achieve integrated multi-sensor navigation and feedback compen-
sation for the system; in the absence of CNS and GPS data, the fine strapdown
algorithm is executed to achieve SIN. Thirdly, real-time performance testing
of the navigation information of system is carried out to determine whether the
CNS and GPS data have been received or not; if not, the system continues to
receive the next set of SINS data. If successful, a Performance Testing Report
(PTR) for the integrated multi-sensor navigation system is generated, and the software
flow ends.

4.1.3. Construction of SINS/CNS/GPS Integrated Multi-Sensor Navigation
System. To construct the SINS/CNS/GPS integrated multi-sensor navigation system
in a laboratory, practical/actual devices and parts are used. Based on prior work
(Quan et al., 2008), actual research development and engineering applications of all
the various sub-systems, a synthesized approach is carried out on the design of the
hardware and software of the system. The hybrid simulation system devices and parts

CCD Star
SensorOFGA

TGM PPM

Integrated Navigation and Performance
Testing System

Devices
Layer

Components
Layer

System
Layer

The entire layers schematic for the hardware system of integrated navigation

TFT LCLV
Star Simulator

CNMSINM

Preformed
Interface

PIM

GPS
Receiver

GPSM

Figure 2. Hardware for the SINS/CNS/GPS integrated multi-sensor navigation system.
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for the experimental SINS/CNS/GPS integrated multi-sensor navigation system are
shown in Figure 4.

4.2. Experimental Method. Based on the error model and SINS/CNS/GPS
integrated multi-sensor navigation system as shown in Figure 4, some experiments
were performed (Ali and Fang, 2005a; Zhang et al., 2004). At the same time, the
experiment of the FKF based on the improved GA was performed on the integrated
multi-sensor navigation system. The conditions for the experiment were:

. (1) For the improved GA: S=20, the chromosome number of an individual filter
N=2, the genetic generation G=200, the crossover probability Pc=0·1, the
mutation probability Pm=0·01, W1=0·3, W2=0·7.

. (2) Assuming a long flight-time unmanned plane as an example, the initial
latitude was set at 39·984°, the initial longitude at 116·344°. The initial error angle
for the head was set at 6′, for the pitch at 20″, and for the roll at 20″. The
gyroscopic drift was 0·01°/h (1σ) and the accelerometer zero offset was 100 μg
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CNS Data
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SINS Data?

Set Parameter

Receive Next
SINS Data
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Adaptive FKF

SIN Algorithm

Feedback
Compensation
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GA Module

SIN
Module

Generate PTR and End
Program

Receive Data?

N

Y

Performance
Testing

Y

N

Y
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GPS Data

Figure 3. Flow diagram of a SINS/CNS/GPS integrated multi-sensor navigation system.
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(1σ). The attitude precision of the CNS was 5″ (1σ), the position and velocity
precision of the GPS were 5 m(1σ) and 0·1 m/s(1σ), and the filter period was 1 s.

We assumed the initial value x̂f (0) of state vector xf is zero. Pf (0) and Q are given
by:

Pf (0) = diag Pϕi ,Pvi ,Pri ,Pεi ,P∇i

[ ]
, i = x, y, z (22)

where:

Pϕi = (10−4)2,Pvi = (0·01)2,Pri = (5)2,Pεi = (0·01◦/h)2,P∇i = (100μg)2 (23)

Q = diag (0·01◦/h)2, (0·01◦/h)2, (0·01◦/h)2, (100μg)2, (100μg)2, (100μg)2[ ] (24)

R1 = diag (5′′)2, (5′′)2, (5′′)2[ ] (25)

R2 = diag (0·1m/s)2, (0·1m/s)2, (0·1m/s)2, (5m)2, (5m)2, (5m)2[ ] (26)

Initial values of the information sharing coefficients are assumed to be
β1(0)=β2(0)=0·49 and βm(0)=0·02. The LFs and the MF are initialized as:

Qi(0) = β−1
i (0)Q, Pi(k) = β−1

i (0)Pf (0), x̂i(0) = x̂f (0), i = 1, 2,m (27)
The experimental results using the FKF and the proposed FKF based on the

improved GA method for the SINS/CNS/GPS integrated system are depicted in
Figures 5 to 7.
Using the UKF and improved GA for the selection of optimized information

sharing coefficients, the FKF based on the improved GA can estimate the attitude
errors, position errors, velocity errors, gyro drifts and accelerometer biases better than
for the traditional FKF. Since gyro induced drift errors are the only error variables
that contribute to the attitude errors, the CNS updates are effective in estimating and
compensating for these drift errors, as well as the position and velocity errors that
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Figure 4. SINS/CNS/GPS integrated multi-sensor navigation system.
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occur due to misalignments. Velocity and position updates from the GPS can estimate
and compensate for velocity, position and accelerometer biases.
From Figures 5 and 6, it can be seen that the estimated attitude and position errors

are minimal using the proposed method. The estimated 3-axis attitude errors are less
than 2″, which is better than the 5″ using the traditional FKF. The estimated 3-axis
position errors are less than 1m, which is better than the 4 m using the traditional
FKF. The estimated 3-axis velocity errors are much better than the traditional FKF,
which are 0·04 m/s rather than 0·08 m/s.
From Figure 7, it can be seen that the gyro errors and accelerometer biases are

estimated and compensated effectively using the proposed method. Compared with
the FKF, the fluctuating extent of the estimated value of gyro errors and
accelerometer biases is smaller, and the convergence of the estimated value is more
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Figure 5. Attitude errors.

0 200 400 600
-2

0

2

4

6

time/s

δx
/(

m
)

Federated KF

the presented method

0 200 400 600
-5

0

5

10

time/s

δy
/(

m
)

Federated KF

the presented method

0 200 400 600
-0.05

0

0.05

0.1

0.15

time/s

δV
x/

(m
/s

)

Federated KF

the presented method

0 200 400 600
-0.05

0

0.05

0.1

0.15

time/s

δV
y/

(m
/s

)

Federated KF

the presented method

Figure 6. Position errors and velocity errors.
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rapid. The proposed method gives estimated gyro errors of up to 0·02°/h at about
140 s while for the FKF they are only up to 0·025°/h at about 280 s. For estimating the
accelerometers biases, the two methods have the same effective convergence rapidity
but the fluctuating extent for the estimated values is different.

5. CONCLUSIONS. In this study, the Strapdown Inertial Navigation System
(SINS) / Celestial Navigation System (CNS) / Global Positioning System (GPS) multi-
sensors integration using Federated Kalman Filter (FKF) based on the improved
Genetic Algorithm (GA) for enhancing navigational performance is investigated.
First, the information sharing coefficients of FKF for the multi-sensor navigation
system were optimized using the improved GA, which improved the fitness function,
avoiding the premature convergence problem of the general GA, while taking
advantage of the decimal-coding to improve the speed and accuracy of calculation.
Second, a solution and construction of a high performance SINS/CNS/GPS integrated
navigation system was proposed using the design of functional modular hardware and
software-flow integration. Third, the Unscented Kalman Filter (UKF) was used to
deal with the nonlinearity of the integrated navigation system. The experimental
results show that with the same experimental conditions, the estimated errors were
minimal using the proposed method. These errors were 0·25, 0·4 and 0·5 times
the corresponding errors estimated by the traditional FKF. The fluctuating extent for
the estimated value of the gyro errors was smaller than that of the traditional FKF and
the convergence of the estimated value was also quicker. When estimating the
accelerometer biases, the two methods had the same rapidity of convergence but
the fluctuating extent of estimated values was different. In total, compared with the
traditional FKF, the proposed method not only greatly increased the accuracy and
reliability of the navigation system, but also resulted in rapid convergence, which
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Figure 7. Gyros drift and accelerometers biases.
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would be appropriate for a long flight-time unmanned plane or long-range ballistic
missile. It has been applied in a project involving the cooperation of the Fifth
Research Unit in Beihang University and the NO.2 Artillery Engineering College with
considerable success.
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