We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
We prove a synthetic Bonnet–Myers rigidity theorem for globally hyperbolic Lorentzian length spaces with global curvature bounded below by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$: It states that the space necessarily is a warped product with warping function $\cos: (-\frac{\pi}{2},\frac{\pi}{2})\to\mathbb{R}_+$. From this, one also sees that a globally hyperbolic spacetime with curvature bounded above by K < 0 and an open distance realizer of length $L=\frac{\pi}{\sqrt{|K|}}$ is a warped product with warping function cos.
In this article we prove that antitrees with suitable growth properties are examples of infinite graphs exhibiting strictly positive curvature in various contexts: in the normalized and non-normalized Bakry-Émery setting as well in the Ollivier-Ricci curvature case. We also show that these graphs do not have global positive lower curvature bounds, which one would expect in view of discrete analogues of the Bonnet-Myers theorem. The proofs in the different settings require different techniques.
Recommend this
Email your librarian or administrator to recommend adding this to your organisation's collection.