We use cookies to distinguish you from other users and to provide you with a better experience on our websites. Close this message to accept cookies or find out how to manage your cookie settings.
To save content items to your account,
please confirm that you agree to abide by our usage policies.
If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account.
Find out more about saving content to .
To save content items to your Kindle, first ensure [email protected]
is added to your Approved Personal Document E-mail List under your Personal Document Settings
on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part
of your Kindle email address below.
Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations.
‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi.
‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
For microscale heterogeneous partial differential equations (PDEs), this article further develops novel theory and methodology for their macroscale mathematical/asymptotic homogenization. This article specifically encompasses the case of quasi-periodic heterogeneity with finite scale separation: no scale separation limit is required. A key innovation herein is to analyse the ensemble of all phase-shifts of the heterogeneity. Dynamical systems theory then frames the homogenization as a slow manifold of the ensemble. Depending upon any perceived scale separation within the quasi-periodic heterogeneity, the homogenization may be done in either one step or two sequential steps: the results are equivalent. The theory not only assures us of the existence and emergence of an exact homogenization at finite scale separation, it also provides a practical systematic method to construct the homogenization to any specified order. For a class of heterogeneities, we show that the macroscale homogenization is potentially valid down to lengths which are just twice that of the microscale heterogeneity! This methodology complements existing well-established results by providing a new rigorous and flexible approach to homogenization that potentially also provides correct macroscale initial and boundary conditions, treatment of forcing and control, and analysis of uncertainty.
In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model. In this paper, we derive the effective model describing a thin-domain flow with permeable boundary through which the fluid is injected into the domain. We start with incompressible Stokes system and perform the rigorous asymptotic analysis. Choosing the appropriate scaling for the injection leads to a compressible effective model.
We analyse a nonlinear partial differential equation system describing the motion of a microswimmer in a nematic liquid crystal environment. For the microswimmer’s motility, the squirmer model is used in which self-propulsion enters the model through the slip velocity on the microswimmer’s surface. The liquid crystal is described using the well-established Beris–Edwards formulation. In previous computational studies, it was shown that the squirmer, regardless of its initial configuration, eventually orients itself either parallel or perpendicular to the preferred orientation dictated by the liquid crystal. Furthermore, the corresponding solution of the coupled nonlinear system converges to a steady state. In this work, we rigorously establish the existence of steady state and also the finite-time existence for the time-dependent problem in a periodic domain. Finally, we will use a two-scale asymptotic expansion to derive a homogenised model for the collective swimming of squirmers as they reach their steady-state orientation and speed.
We study homogenization for a class of non-symmetric pure jump Feller processes. The jump intensity involves periodic and aperiodic constituents, as well as oscillating and non-oscillating constituents. This means that the noise can come both from the underlying periodic medium and from external environments, and is allowed to have different scales. It turns out that the Feller process converges in distribution, as the scaling parameter goes to zero, to a Lévy process. As special cases of our result, some homogenization problems studied in previous works can be recovered. We also generalize the approach to the homogenization of symmetric stable-like processes with variable order. Moreover, we present some numerical experiments to demonstrate the usage of our homogenization results in the numerical approximation of first exit times.
Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale processes to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required for these homogenised models. In this paper, we derive a homogenised model, including effective interface conditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas flow and the advective–diffusive transport of material. We investigate the effect that different microscale models describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify a new effective parameter, $\mathcal{L}$, the average microscale interface length, which modifies the effective evaporation rate in the homogenised model. Like the effective diffusivity and permeability of a porous medium, $\mathcal{L}$ may be found by solving a periodic cell problem on the microscale. We also show that the different microscale models of the interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.
We study the asymptotic behaviour of the periodically mixed Zaremba problem. We cover the part of the boundary by a chess board with a small period (square size) $\varepsilon$ and impose the Dirichlet condition on black and the Neumann condition on white squares. As $\varepsilon \to 0$, we get the effective boundary condition which is always of the Dirichlet type. The Dirichlet data on the boundary, however, depend on the ratio between the magnitudes of the two boundary values.
We investigate a reaction–diffusion problem in a two-component porous medium with a nonlinear interface condition between the different components. One component is connected and the other one is disconnected. The ratio between the microscopic pore scale and the size of the whole domain is described by the small parameter $\epsilon$. On the interface between the components, we consider a dynamic Wentzell-boundary condition, where the normal fluxes from the bulk domains are given by a reaction–diffusion equation for the traces of the bulk solutions, including nonlinear reaction kinetics depending on the solutions on both sides of the interface. Using two-scale techniques, we pass to the limit $\epsilon \to 0$ and derive macroscopic models, where we need homogenisation results for surface diffusion. To cope with the nonlinear terms, we derive strong two-scale convergence results.
This paper presents the current state of mathematical modelling of the electrochemical behaviour of lithium-ion batteries (LIBs) as they are charged and discharged. It reviews the models developed by Newman and co-workers, both in the cases of dilute and moderately concentrated electrolytes and indicates the modelling assumptions required for their development. Particular attention is paid to the interface conditions imposed between the electrolyte and the active electrode material; necessary conditions are derived for one of these, the Butler–Volmer relation, in order to ensure physically realistic solutions. Insight into the origin of the differences between various models found in the literature is revealed by considering formulations obtained by using different measures of the electric potential. Materials commonly used for electrodes in LIBs are considered and the various mathematical models used to describe lithium transport in them discussed. The problem of upscaling from models of behaviour at the single electrode particle scale to the cell scale is addressed using homogenisation techniques resulting in the pseudo-2D model commonly used to describe charge transport and discharge behaviour in lithium-ion cells. Numerical solution to this model is discussed and illustrative results for a common device are computed.
The Neumann–Poincaré (NP) operator, a singular integral operator on the boundary of a domain, naturally appears when one solves a conductivity transmission problem via the boundary integral formulation. Recently, a series expression of the NP operator was developed in two dimensions based on geometric function theory [34]. In this paper, we investigate geometric properties of composite materials using this series expansion. In particular, we obtain explicit formulas for the polarisation tensor and the effective conductivity for an inclusion or a periodic array of inclusions of arbitrary shape with extremal conductivity, in terms of the associated exterior conformal mapping. Also, we observe by numerical computations that the spectrum of the NP operator has a monotonic behaviour with respect to the shape deformation of the inclusion. Additionally, we derive inequality relations of the coefficients of the Riemann mapping of an arbitrary Lipschitz domain using the properties of the polarisation tensor corresponding to the domain.
Poroelastic effects have been of great interest in the seismic literature as they have been identified as a major cause of wave attenuation in heterogeneous porous media. The observed attenuation in the seismic wave can be explained in part by energy loss to fluid motion in the pores. On the other hand, it is known that the attenuation is particularly pronounced in stratified structures where the scale of spatial heterogeneity is much smaller than the seismic wavelength. Understanding of poroelastic effects on seismic wave attenuation in heterogeneous porous media has largely relied on numerical experiments. In this work, we present a homogenisation technique to obtain an upscaled viscoelastic model that captures seismic wave attenuation when the sub-seismic scale heterogeneity is periodic. The upscaled viscoelastic model directly relates seismic wave attenuation to the material properties of the heterogeneous structure. We verify our upscaled viscoelastic model against a full poroelastic model in numerical experiments. Our homogenisation technique suggests a new approach for solving coupled equations of motion.
Heat transport in granular and porous media occurs through conduction in the solid and radiation through the voids. By exploiting the separation of length scales between the small typical particles or voids and the large size of whole region, the method of multiple scales can be applied. For a purely diffusive system, this yields a problem on the macroscale with an effective conductivity, deduced by solving a ‘cell problem’ on the microscale. Here, we apply the method when radiation and conduction are both present; however, care must be taken to correctly handle the integral nature of the radiative boundary condition. Again, an effective conductivity is found by solving a ‘cell problem’ which, because of the non-linearity of radiative transfer, to be solved for each temperature value. We also incorporate modifications to the basic theory of multiple scales in order to deal with the non-local nature of the radiative boundary condition. We derive the multiple scales formulation of the problem and report on numerical comparisons between the homogenised problem and direct solution of the problem. We also compare the effective conductivity to that derived using Maxwell models and effective medium theory.
Quasiperiodic media is a class of almost periodic media which is generated from periodic media through a ‘cut and project’ procedure. Quasiperiodic media displays some extraordinary optical, electronic and conductivity properties which call for the development of methods to analyse their microstructures and effective behaviour. In this paper, we develop the method of Bloch wave homogenisation for quasiperiodic media. Bloch waves are typically defined through a direct integral decomposition of periodic operators. A suitable direct integral decomposition is not available for almost periodic operators. To remedy this, we lift a quasiperiodic operator to a degenerate periodic operator in higher dimensions. Approximate Bloch waves are obtained for a regularised version of the degenerate operator. Homogenised coefficients for quasiperiodic media are obtained from the first Bloch eigenvalue of the regularised operator in the limit of regularisation parameter going to zero. A notion of quasiperiodic Bloch transform is defined and employed to obtain homogenisation limit for an equation with highly oscillating quasiperiodic coefficients.
The paper is devoted to the existence and rigorous homogenisation of the generalised Poisson–Nernst–Planck problem describing the transport of charged species in a two-phase domain. By this, inhomogeneous conditions are supposed at the interface between the pore and solid phases. The solution of the doubly non-linear cross-diffusion model is discontinuous and allows a jump across the phase interface. To prove an averaged problem, the two-scale convergence method over periodic cells is applied and formulated simultaneously in the two phases and at the interface. In the limit, we obtain a non-linear system of equations with averaged matrices of the coefficients, which are based on cell problems due to diffusivity, permittivity and interface electric flux. The first-order corrector due to the inhomogeneous interface condition is derived as the solution to a non-local problem.
The decontamination of hazardous chemical agents from porous media is an important and critical part of the clean-up operation following a chemical weapon attack. Decontamination is often achieved through the application of a cleanser, which reacts on contact with an agent to neutralise it. While it is relatively straightforward to write down a model that describes the interplay of the agent and cleanser on the scale of the pores in the porous medium, it is computationally expensive to solve such a model over realistic spill sizes.
In this paper, we consider the homogenisation of a pore-scale model for the interplay between agent and cleanser, with the aim of generating simplified models that can be solved more easily on the spill scale but accurately capture the microscale structure and chemical activity. We consider two situations: one in which the agent completely fills local porespaces and one in which it does not. In the case when the agent does not completely fill the porespace, we use established homogenisation techniques to systematically derive a reaction–diffusion model for the macroscale concentration of cleanser. However, in the case where the agent completely fills the porespace, the homogenisation procedure is more in-depth and involves a two-timescale approach coupled with a spatial boundary layer. The resulting homogenised model closely resembles the microscale model with the effect of the porous material being incorporated into the parameters. The two models cater for two different spill scenarios and provide the foundation for further study of reactive decontamination.
This paper deals with the periodic homogenization of nonlocal parabolic Hamilton–Jacobi equations with superlinear growth in the gradient terms. We show that the problem presents different features depending on the order of the nonlocal operator, giving rise to three different cell problems and effective operators. To prove the locally uniform convergence to the unique solution of the Cauchy problem for the effective equation we need a new comparison principle among viscosity semi-solutions of integrodifferential equations that can be of independent interest.
For a family of elliptic operators with periodically oscillating coefficients, $-{\rm div}(A(\cdot /\varepsilon )\nabla )$ with tiny ε > 0, we comprehensively study the first-order expansions of eigenvalues and eigenfunctions (eigenspaces) for both the Dirichlet and Neumann problems in bounded, smooth and strictly convex domains (or more general domains of finite type). A new first-order correction term is introduced to derive the expansion of eigenfunctions in L2 or $H^1_{\rm loc}$. Our results rely on the recent progress on the homogenization of boundary layer problems.
In this paper, we consider the Stokes equations in a perforated domain. When the number of holes increases while their radius tends to 0, it is proven in Desvillettes et al. [J. Stat. Phys.131 (2008) 941–967], under suitable dilution assumptions, that the solution is well approximated asymptotically by solving a Stokes–Brinkman equation. We provide here quantitative estimates in $L^{p}$-norms of this convergence.
We study the residual diffusion phenomenon in chaotic advection computationally via adaptive orthogonal basis. The chaotic advection is generated by a class of time periodic cellular flows arising in modeling transition to turbulence in Rayleigh-Bénard experiments. The residual diffusion refers to the non-zero effective (homogenized) diffusion in the limit of zero molecular diffusion as a result of chaotic mixing of the streamlines. In this limit, the solutions of the advection-diffusion equation develop sharp gradients, and demand a large number of Fourier modes to resolve, rendering computation expensive. We construct adaptive orthogonal basis (training) with built-in sharp gradient structures from fully resolved spectral solutions at few sampled molecular diffusivities. This is done by taking snapshots of solutions in time, and performing singular value decomposition of the matrix consisting of these snapshots as column vectors. The singular values decay rapidly and allow us to extract a small percentage of left singular vectors corresponding to the top singular values as adaptive basis vectors. The trained orthogonal adaptive basis makes possible low cost computation of the effective diffusivities at smaller molecular diffusivities (testing). The testing errors decrease as the training occurs at smaller molecular diffusivities. We make use of the Poincaré map of the advection-diffusion equation to bypass long time simulation and gain accuracy in computing effective diffusivity and learning adaptive basis. We observe a non-monotone relationship between residual diffusivity and the amount of chaos in the advection, though the overall trend is that sufficient chaos leads to higher residual diffusivity.
In this paper a second-order two-scale (SOTS) analysis method is developed for a static heat conductive problem in a periodical porous domain with radiation boundary condition on the surfaces of cavities. By using asymptotic expansion for the temperature field and a proper regularity assumption on the macroscopic scale, the cell problem, effective material coefficients, homogenization problem, first-order correctors and second-order correctors are obtained successively. The characteristics of the asymptotic model is the coupling of the cell problems with the homogenization temperature field due to the nonlinearity and nonlocality of the radiation boundary condition. The error estimation is also obtained for the original solution and the SOTS’s approximation solution. Finally the corresponding finite element algorithms are developed and a simple numerical example is presented.
Numerical simulation of two-phase flow in fractured karst reservoirs is still a challenging issue. The triple-porosity model is the major approach up to now. However, the triple-continuum assumption in this model is unacceptable for many cases. In the present work, an efficient numerical model has been developed for immiscible two-phase flow in fractured karst reservoirs based on the idea of equivalent continuum representation. First, based on the discrete fracture-vug model and homogenization theory, the effective absolute permeability tensors for each grid blocks are calculated. And then an analytical procedure to obtain a pseudo relative permeability curves for a grid block containing fractures and cavities has been successfully implemented. Next, a full-tensor simulator has been designed based on a hybrid numerical method (combining mixed finite element method and finite volume method). A simple fracture system has been used to demonstrate the validity of our method. At last, we have used the fracture and cavity statistics data from TAHE outcrops in west China, effective permeability values and other parameters from our code, and an equivalent continuum simulator to calculate the water flooding profiles for more realistic systems.