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Abstract
Evaporation within porous media is both a multiscale and interface-driven process, since the phase change at the
evaporating interfaces within the pores generates a vapour flow and depends on the transport of vapour through the
porous medium. While homogenised models of flow and chemical transport in porous media allow multiscale pro-
cesses to be modelled efficiently, it is not clear how the multiscale effects impact the interface conditions required
for these homogenised models. In this paper, we derive a homogenised model, including effective interface con-
ditions, for the motion of an evaporation front through a porous medium, using a combined homogenisation and
boundary layer analysis. This analysis extends previous work for a purely diffusive problem to include both gas
flow and the advective–diffusive transport of material. We investigate the effect that different microscale models
describing the chemistry of the evaporation have on the homogenised interface conditions. In particular, we identify
a new effective parameter, L, the average microscale interface length, which modifies the effective evaporation rate
in the homogenised model. Like the effective diffusivity and permeability of a porous medium, L may be found
by solving a periodic cell problem on the microscale. We also show that the different microscale models of the
interface chemistry result in fundamentally different fine-scale behaviour at, and near, the interface.

1. Introduction

The drying of a porous or granular material is of great importance in the construction and ceramics
industries [22, 23], in soil mechanics [13, 20], in the food manufacturing industry [1, 2], and in the pro-
duction of pharmaceuticals [28]. In the case of evaporation from soils and hygroscopic porous materials
(in which moisture is bound within the solid matrix), the evaporation process may be complicated by
the release of moisture adsorbed by the grains even when the large pores of the material, between grains,
are no longer saturated with liquid [3, 22]. The evaporation process is simpler when the porous material
consists of an impermeable solid structure, such as an array of glass beads [22, 26].

Liquid and gas may be distributed in multiple ways within the pores of a porous medium. For example,
both liquid and gas phases may co-exist within the pore space, or the two phases may occupy distinct
macroscale regions of the porous medium, separated by an evaporating interface. Detailed modelling of
mass, momentum, and heat transfer effects, and a derivation of equations averaged over the microscale
in the former case is undertaken in [29], while the latter is studied in, for instance, [27].

In fact, different configurations of liquid and gas within the pore space can occur at different stages
of the evaporating process [10, 20]. Liquid that saturates a porous medium initially evaporates from the
surface of the porous medium. As liquid is removed a region containing both liquid and gas appears
between the surface of the porous medium and the region saturated with liquid, and liquid is drawn
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to the surface by capillary action. This stage of drying is known as the ‘constant rate period’, as the
evaporation rate from the surface is approximately constant. Eventually, the connections between the
liquid reservoir and the surface of the porous medium break, and evaporation then occurs within the
pores of the porous medium, at the interfaces between the gas and liquid phases. The evaporation process
is then affected by the rate at which vapour is transported out of the porous material, which decreases as
the gas–liquid interface advances further into the porous medium, and so this stage of drying is known as
the ‘falling rate period’. Capillary effects may still be important during the falling rate period [30, 31].
However, in the case of low surface tension, capillary effects are very small, and we expect to find a
sharp interface between the liquid- and gas-occupied regions. Our focus in this paper will be the case in
which a macroscale evaporation front divides a region of pore space saturated with liquid from a region
saturated with gas.

The motion of a one-dimensional evaporation front through porous media is studied in [27], assuming
a priori a volume-averaged or homogenised model consisting of Darcy flow and the advection–diffusion
of chemicals. A similarity solution is found describing the motion of the evaporating interface, limited by
the transport of vapour through the porous medium. The model does not explicitly take the microstruc-
ture of the porous medium into account. Indeed, the authors note ‘It is certainly acknowledged that pore
structure will affect diffusion, the formulation of the problem, and the motion and dimensionality of the
interface. However, these effects are not in the scope of this investigation’.

The interaction of microscale and macroscale processes makes evaporation within porous media
complicated and computationally expensive to simulate. Simulations on relatively small areas of porous
medium have been performed, for instance in [10]. Pore-network approaches have been taken as a sim-
plification of continuum models, including in [18, 26]; the approach is reviewed in [22]. In this method,
the porous structure is modelled as a network with the nodes as pores and the edges as the narrow throats
between pores. Another approach is to view evaporation as an ‘immiscible displacement’ problem [24];
here, the gas phase is injected at high pressure and forces evaporation of the liquid (a technique used in
oil recovery [27]). The stability of such evaporation fronts, due to the transport of vapour away from the
front, may be demonstrated experimentally [24].

In numerous applications, homogenisation and other upscaling methods have been used to great
effect in deriving effective partial differential equations (PDEs) to describe flow and transport processes
in porous media. For instance, Darcy’s law for fluid flow through a porous medium may be derived by
homogenising the Stokes flow equations within the pores [14]. The equations describing the advection
and diffusion of chemicals, particles or heat through a porous medium may be homogenised to give
effective advection–diffusion equations, in terms of the Darcy velocity [5, 6]. A homogenised model for
a multi-phase flow is derived in [8], while flows in deformable porous media are homogenised in [25].
In each case, the result of the homogenisation analysis is a set of averaged, or effective, PDEs that hold
over the domain of the entire porous medium, which are significantly simpler to solve than the original
model (which is valid within the complicated domain of the pore space) while rigorously taking the
microstructure of the porous medium into account.

However, evaporation within a porous medium is an example of a multiscale process that is driven
by processes at an interface, in this case, the evaporating interface separating the gas- and liquid-filled
regions of the porous medium. Another example is the reactive decontamination of porous media, as
studied in [7, 16]. Here, a chemical contaminant within the pore space is neutralised by a cleanser fluid,
with the neutralisation reaction occurring at the interface between the two immiscible fluids. Stefan
problems within porous media also fall into this category of interface-driven behaviour, for example,
those involving the freezing or melting of a liquid within a porous structure [11, 15, 17]. While the
homogenised PDEs for the macroscale flow and transport of material through porous media incorpo-
rate the microscale processes and structure through effective parameters, it is not clear how and if the
microstructure affects the interface conditions. The key question is: what interface conditions should be
imposed on the homogenised PDEs that accurately capture the effect the microstructure has on the inter-
face processes? This question was addressed for the simple reactive decontamination process described
in [16], where effective interface conditions at the reacting interface are derived using a combined
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homogenisation and boundary layer approach. A key result is that, in order to smooth out temporal
oscillations in the diffusive flux at the interface (due to the solid obstructions on the pore-scale), a nested
boundary layer structure is required.

To describe an evaporating process, we must understand the mechanism by which liquid molecules
become vapour at the evaporating interface. A commonly used concept is that the evaporative flux is
determined by the difference between the local rate of evaporation and condensation of liquid molecules;
this is modelled using the Hertz–Knudsen law [12]. There are some concerns with this model, in par-
ticular since the evaporation and condensation coefficients must be determined experimentally [21], but
it is nevertheless widely used. Some authors (see [9], for example) instead assume that the surface is in
thermodynamic equilibrium, with the chemical potential continuous across the interface. Thus, equiva-
lently, the vapour density is at the saturation density. We note that this is a sublimit of the Hertz–Knudsen
law in the case where the rate at which the vapour pressure at the interface reaches the saturation pres-
sure is much faster than the rate of interface motion. For slowly moving evaporation fronts, the Dirichlet
condition where the vapour density is at its prescribed saturation point is therefore likely to be accurate.

In this paper, we aim to use homogenisation methods combined with boundary layer analysis to
derive an effective model for the motion of an evaporation front through a porous medium consisting of
an impermeable, non-reactive, solid matrix, including effective interface conditions at the evaporating
boundary. We assume for simplicity that the liquid is stationary, and that there is no variation in temper-
ature. Our evaporation model will describe the flow of gas and the transport of the liquid vapour through
an inert gas, away from the gas–liquid interface. Our analysis will build on the method of [16], which
was for a purely diffusive system, incorporating the flow of the gas mixture and the advective–diffusive
transport of liquid vapour. In particular, we will investigate the effect of different assumptions about the
surface chemistry at the evaporating interface. We will use a Hertz–Knudsen law but will also consider
the sublimit where the vapour at the interface is at its saturation point. Indeed, we will find that these
two scenarios give very different fine-scale behaviour near the evaporating interface.

The remainder of the paper is structured as follows. In Section 2, we introduce the model for the flow
and transport of vapour in the gas-filled pores of the porous medium, and nondimensionalise, taking
care to ensure the correct balance of terms on the microscale. In Section 3, we then homogenise this
model to derive the effective PDEs and interface conditions at the macroscale evaporating interface. The
analysis in Section 3 does not require us to specify the chemistry condition at the interface. However, an
effective chemistry condition is required to close the homogenised model; we derive this in Section 4,
in two sublimits of the Hertz–Knudsen relation. We then explore how the different chemistry boundary
conditions result in very different asymptotic structures in the boundary layer(s) around the evaporat-
ing interface. Discussion of the homogenisation process and the results of our analysis are given in
Section 5.

2. The pore-scale model

In this section, we present a model for the evaporation of a liquid from within the pores of a porous
medium. We consider a two-dimensional, locally periodic porous medium, initially saturated with sta-
tionary liquid, occupying the region y ≤ 0, with the surface of the porous medium at y = 0. As the liquid
begins to evaporate, we assume that there is an evaporation front, located at y = h(x, t) for h ≤ 0, mov-
ing down into the porous medium in the direction −y. This front y = h(x, t) is the interface or interfaces
between the gas and liquid phase: we note that due to the solid microstructure, the front may be formed
of several disjoint interfaces, and so h(x, t) may be defined piecewise. Above the evaporation front, in
y ∈ [h, 0], there is a mixture of inert gas (eg: air) and liquid vapour. We make the simplifying assump-
tion that the liquid is stationary so that there is no capillary action or any other effects due to viscous
or surface tension forces. This no-liquid flow case is valid in the limit of very small forces due to sur-
face tension compared with liquid inertia. Although the liquid is stationary, we study the flow of the
gas mixture and the advection–diffusion of the vapour through the pores, as well as the motion of the
evaporating front down through the pores. A schematic is shown in Figure 1.
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Figure 1. Schematic showing the regions of pore space saturated with liquid (blue) and gas mix-
ture (yellow). The solid microstructure is illustrated by the grey circles. The pore lengthscale, d, and
macro-lengthscale, l, are shown; in reality, ε = d/l would be much smaller than in the schematic.

We assume that the total density ρG of the gaseous mixture is constant so that the gas mixture is
incompressible. In the gas-occupied pore space, we estimate a Reynolds number of around 10−4 (tak-
ing the approximate values for water evaporating into air ρG ≈ 1 kg m−3 and the kinematic viscosity
μ ≈ 10−5 kg m−1s−1, using the pore lengthscale d ≈ 10−6 m typical for brick or concrete, and using the
approximation [u] = D/l for the velocity scaling introduced in Section 2.1 below, where the diffusivity
of water vapour in air is around D ≈ 10−5 m2 s−1, and we assume the evaporation lengthscale is around
l ≈ 10−2 m). Since Re � 1, it is reasonable to assume that the gas mixture satisfies the Stokes flow
equations:

∇ · u = 0, (2.1a)

μ∇2u − ∇p = 0, (2.1b)

within the pores, where u, p and μ are the velocity, pressure and viscosity of the gas mixture, respectively.
We assume Fickian diffusion of liquid vapour through the inert gas so that the liquid vapour, with local
density ρv, is transported within the mixture according to the advection–diffusion equation:

(ρv)t + u · ∇ρv = D∇2ρv, (2.1c)

where D is the diffusivity of the vapour in the inert gas, and the subscript t denotes the partial derivative
with respect to time.

At interfaces between the gas mixture and solid microstructure, we assume that there is no flux of the
inert gas or vapour into the solid material, and no slip on the solid surface, so that

u = 0, (2.2a)

D∇ρv · ns = 0, (2.2b)

where ns is the normal to these interfaces.
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At interfaces between the gas mixture and the stationary liquid, we impose the total conservation of
mass of both liquid and gas over the interface, and also the conservation of mass of the liquid molecules
across the interface, which may be expressed as:

−ρLVm = ρG(u · m − Vm), (2.3a)

−ρLVm = ρv(u · m − Vm) − D∇ρv · m, (2.3b)

on y = h(x, t), where m is normal to the gas–liquid interface (pointing into the gas region) and Vm is the
velocity of the interface in the normal direction m. The (constant) density of the liquid phase is ρL. The
mixture velocity u = uex + vey also satisfies a kinematic condition on the interface, which reduces to

u + vhx = 0, (2.3c)

on y = h(x, t), in the case of interest where the liquid is stationary. We note that the normal velocity of
the interface and unit normal may be expressed as:

Vm = ht√
1 + h2

x

, m = (hx, −1)√
1 + h2

x

. (2.4)

The interface h may be defined piecewise as necessary due to the solid microstructure of the porous
medium.

The Stokes flow and advection–diffusion model presented thus far are very general – a statement
of the physical principles of conservation of mass and momentum – and could apply to a variety of
different processes. To close the system and determine the motion of the gas–liquid interface, we need to
impose an additional condition at the interface that determines the evaporation rate. This extra condition
encapsulates the chemistry driving the evolution of the system. As discussed in Section 1, we use a
Hertz–Knudsen law, which, assuming a constant temperature, states that the mass flux J across the
interface, is proportional to the difference between the vapour density at the interface and the (constant)
saturation density of the liquid vapour, denoted ρ∗

v , and thus we write

J = a(ρ∗
v − ρv). (2.5)

Here, a [m s−1] is a mass transfer coefficient, the value of which will depend in general on the tempera-
ture, as well as the chemistry of the fluids. We will assume that a is constant. We note that the mass flux
across the interface may be given in terms of the interface velocity, according to

J = −ρLVm. (2.6)

2.1. Nondimensionalisation

We nondimensionalise our pore-scale model (2.1)–(2.6) using the scalings:

x = dx̂, h = dĥ, ρv = ρ∗
v ρ̂, t = d2

εδD
t̂, u = Dνε

d
û, p = μDνε2

d2
p̂, (2.7)

where we have introduced the dimensionless parameters:

δ = ρ∗
v

ρL

, ε = d

l
� 1, ν = ρ∗

v

ρG

. (2.8)

These are, respectively, the ratio of the saturated vapour density to the liquid density, the ratio of the pore
lengthscale, d, to the lengthscale of the drying porous medium, l, (these lengths are shown schematically
in Figure 1), and the ratio of the saturated vapour density to the gas mixture density (the dilution of the
vapour within the gas mixture).

We have chosen the lengthscale to be d, the lengthscale of the pore space within the porous medium,
and the vapour density scaling to be the saturation vapour density, ρ∗

v . The timescale is chosen to be
that over which the liquid–gas interfaces move over the pore lengthscale d. To see this, we note that the
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motion of these microscale interfaces is due to transport of the vapour away from the interfaces. Since
the vapour is much less dense than the liquid, we will see that evaporation drives a gas flow moving
away from the interface. The lengthscale of the vapour transport, that is, that over which ρ̂ has O(1)
variation, must therefore be l, the lengthscale of the entire porous medium. The timescale has therefore
been chosen to balance the diffusive flux of vapour out of the interface with the left-hand side of (2.3b).
The velocity scaling for the gas is determined by balancing the terms in (2.3a), and the pressure scaling
is chosen to give the correct balance in order to derive Darcy’s law, as discussed in [6].

Substituting from (2.7) into (2.1)–(2.6), and dropping the hat notation for dimensionless variables,
we find that for y > h(x, t) in the pore space:

ε∇ · u = 0, (2.9a)

ε∇2u = ∇p, (2.9b)

ε (δρt + νu · ∇ρ) = ∇2ρ, (2.9c)

and at gas–solid interfaces,

u = 0, ∇ρ · ns = 0, (2.9d)

while at y = h(x, t),

u · m − δ
ht√

1 + h2
x

= − ht√
1 + h2

x

, (2.9e)

ενρ

(
u · m − δ

ht√
1 + h2

x

)
− ∇ρ · m = −ε

ht√
1 + h2

x

, (2.9f)

u + vhx = 0, (2.9g)

along with the chemistry condition:

1 − ρ = −α
ht√

1 + h2
x

. (2.9h)

Here, the dimensionless parameter

α := ρL[x]

a[t]ρ∗
v

= D

al
(2.10)

describes the ratio of the speed of the interface motion to the rate at which ρ approaches its equilibrium
value (the saturation density). We note that α decreases as the lengthscale l of the porous material
increases.

There are four dimensionless parameters in the model (2.9), namely ε, δ, ν and α. We note that all
of δ, ε and ν are less than one by definition. We require ε � 1 in order to perform the homogenisation
analysis. This is a good assumption since pores in concrete or brick, say, are on the order of microns,
whereas we might be interested in the drying of centimetres of the porous medium. We expect that
δ ≈ 10−3, which is also small (this value is for a water and air combination). The parameter ν gives the
dilution of the liquid vapour in the gas mixture, and may be small, but is not expected to be as small as δ.
For the homogenisation analysis in the following section, we assume that δ and ν are both O(1), whilst
ε � 1. We may subsequently take either of the sublimits δ → 0 or ν → 0 after the homogenisation, if
necessary. We note that the reduced version of the homogenised model in the case(s) δ � 1 and/or ν � 1
remains valid in the case δ � ε or ν � ε.

The final parameter, α, quantifies how far the vapour density at the interface is from the saturation
density or, alternatively, how far the interface is from being in thermodynamic equilibrium. We note
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that we have assumed for our nondimensionalisation that α is at most O(1), or equivalently, that the
lengthscale l of the porous material is sufficiently large. If α 
 1 then we would require a different,
longer, timescale of the interface motion, t ∼ α, by balancing (2.9h), since the evaporation process is in
that case limited by the rate at which liquid molecules escape into the gas phase. Conversely, in the case
that α is small, the evaporating interface moves slowly enough that equilibrium is reached at the surface,
and so the chemistry interface condition (2.9h) reduces to a Dirichlet condition, ρ = 1. This statement
of ‘continuous chemical potential’ over the interface is contained within the Hertz–Knudsen law in the
α � 1 limit. In Section 4, we will investigate in detail how the size of α (relative to powers of ε) affects
both the effective interface conditions for the homogenised model and the fine-scale processes near the
evaporating interface.

3. Homogenisation

In this section, we homogenise the pore-scale model (2.9), deriving effective PDEs that hold over the
entire porous medium (rather than only within the pore space) and also the effective boundary conditions
that hold at the gas–liquid interface. Although the microscale behaviour is necessarily two-dimensional
due to the pore structure, for the homogenisation analysis we restrict our attention to the simplest case
in which the macroscale behaviour is one-dimensional, with a flat macroscale evaporating interface,
parallel to the surface of the porous material. We assume that the microstructure of the porous medium
is spatially periodic.

After giving an overview of the homogenisation process in Section 3.1, we will then derive an effec-
tive model for the gas flow in Section 3.2, before analysing the advection–diffusion system in Section
3.3. We note that for neither of these analyses do we need to use the form of the chemistry interface
condition, which will be incorporated in Section 4, for various ranges of α.

3.1. Overview and problem set-up

We perform the homogenisation in terms of the small parameter ε and assume the distinguished limit
in which δ, ν = O(1). Since our dimensionless variables x = (x, y) and t are O(1) on the microscale, we
also introduce macroscale variables:

X := εx, T := εt, (3.1)

in which the lengthscale is O(1) on the entire porous medium, and the macroscale timescale is that of
the interface motion over the entire porous medium. We change variables to these macroscale variables
X, Y , T and denote the macroscale interface Y = H(T), where H(T ) is the average interface position and
is to be determined as part of the solution. We note that H(T ) is independent of the microscale (since it
is an average value). We assume that the macroscale problem is one-dimensional, so the interface is flat
on the macroscale with H independent of X. We then employ a second change of variables to the frame
moving with the macroscale interface, by setting Z = Y − H(T).

To average our model, we perform a homogenisation analysis in both space and time. We will find
that, far from the gas–liquid interface, the fluid flow problem homogenises to Darcy flow, and we will find
an effective advection–diffusion equation that holds on the macroscale. This homogenisation procedure
is almost exactly as presented in [6], although we must take care with the time dependence, since we
have changed to a travelling coordinate system and the solid microstructure is continuously moving up
through the microscale domain. Near the macroscale interface, we combine a homogenisation analysis
with a boundary layer analysis, in a similar way to that presented in [16], in order to incorporate effects
due to the microstructure into the effective interface conditions. We refer to the homogenisation away
from the interface as the outer problem, and the processes within an O(ε) distance of the interface as
the inner problem. As in [16], we will find that, in general, an additional intermediate boundary layer
is required, with lengthscale O(ε1/2), over which temporal oscillations in the vapour density (due to the
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Figure 2. Schematic showing the macroscale evaporating interface, at Z = 0 in the moving coordinate
system, with the outer, intermediate and inner regions for the boundary layer analysis.

oscillations in the evaporation rate at the interface) are smoothed out, allowing the inner problem to be
matched with the outer problem. These regions are shown in the schematic of Figure 2. We state the
problem in the outer and inner regions in Sections 3.1.1 and 3.1.2 below but introduce the intermediate
problem in Section 3.3, since it is only needed for the advection–diffusion problem.

The asymptotic analysis presented in the following sections forms a general framework for an evap-
oration process. For certain ranges of α, we will show (see Section 4) that this framework may be
significantly simplified: when α � O(ε1/2) the intermediate layer at the evaporating interface is nec-
essary to smooth oscillations in the vapour flux, while for α � ε1/2, the intermediate region is shown to
be redundant and only a single boundary layer (the inner region) about the evaporating front is required.

3.1.1. Statement of outer problem
Away from the evaporating interface (an O(1) macro-lengthscale distance away), we (re)-introduce
microscale variables ξ = X/ε and η = Z/ε (these move with the macroscale interface, hence differ from
the static coordinates x and y that we had previously) and work on the timescale t = T/ε. We intro-
duce a microscale cell containing a periodic section of the microstructure, denoted by ωc, and illustrated
in Figure 3 (left), with fluid-occupied region ωf (t), and solid inclusion ωs(t). We treat the dependent
variables ξ , η, t, and Z and T as independent variables and so (2.9a)–(2.9c) in the outer region become

ε

(
∇ξ + εe2

∂

∂Z

)
· u = 0, (3.2a)

ε

(
∇2

ξ
+ ε

(
∇ξ · e2

∂

∂Z
+ e2

∂

∂Z
· ∇ξ

)
+ ε2 ∂2

∂Z2

)
u =

(
∇ξ + εe2

∂

∂Z

)
p, (3.2b)

εδ
(
ρt + ερT − HT

(
ρη + ερZ

))+
(

∇ξ + εe2

∂

∂Z

)
·
(

ενρu −
(

∇ξ + εe2

∂

∂Z

)
ρ

)
= 0. (3.2c)

The vapour density ρ, gas velocity u and pressure p in this outer region are all functions of ξ , η, t, Z ,
and T . On the boundary of the cell ωc, we assume that the dependent variables are periodic, with period
1, in ξ , η. We note that the geometry of the microscale cell changes over time, since the solid inclusions
move up through the cell at speed HT . Since the microstructure is spatially periodic, this means that
the cell geometry is also periodic in t, with period 1/HT . We also therefore assume that the dependent
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Figure 3. Schematics of the microscale cells regions. Left: the cell ωf (t) = [ − 1/2, 1/2]2 \ ωs(t) for the
outer and intermediate regions. Right: the inner cell ωH formed of the region between z =H(x, t) and �,
x ∈ [ − 1/2, 1/2], excluding the solid structure ωs(t). In the analysis we consider the limit as the height
of � increases, so that ωH becomes semi-infinite in z. The solid inclusions ωs(t) (shown as grey circles)
move up through both cells at speed HT , so that the cells are periodic in time t with period 1/HT .

variables are periodic in t, with period 1/HT . On the surface ∂ωs(t) of the solid material (2.9d) becomes

u = 0, (3.2d)
(

∇ξ + εe2

∂

∂Z

)
ρ · ns = 0, (3.2e)

where ns(t) is the unit normal to the solid surface. In (3.2), we have introduced the notation:

∇ξ = e1

∂

∂ξ
+ e2

∂

∂η
, (3.3)

for the microscale gradient operator, where e1 and e2 are the unit vectors in the X or ξ , and Z or η

directions, respectively (we use the same notation for unit vectors in both coordinate systems).

3.1.2. Statement of the inner problem
As in [16], we will find that there must be a boundary layer near the gas–liquid interface in which
oscillations due to the motion of the interface are felt at leading order. In our moving coordinate system,
the macroscale interface is at Z = 0. We look for a boundary layer of the macroscale problem by changing
to the microscale variables Z = z/ε, X = x/ε centred on the interface. We define the interface to be
located at z =H on the microscale, where H(x, t) is the microscale variation of the evaporating interface
about its mean position z = 0. We assume the problem is periodic in x and t, and so study the inner
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region on the microscale ‘cell’ region, ωH(t), illustrated on the right of Figure 3. This cell is the region
x ∈ [ − 1/2, 1/2] between z =H(x, t) and some curve �, excluding the solid structure ωs(t). However,
we cannot assume periodicity in z. Instead, we will match with the outer region in the e2 direction by
sending the height z of the curve � to ∞ so that the inner cell approaches a semi-infinite region. We
call this region a ‘cell’ by analogy with the cell region ωc(t) for the outer problem. We will homogenise
along the macroscale interface in the x direction and in time t.

In this inner region, we use an overbar for the dependent variables ρ̄, p̄ and ū, to differentiate from
the variables in the outer region. These inner region variables are functions of x, z, t and T (via the value
of HT) but are independent of Z . We also use the gradient operator:

∇x = e1

∂

∂x
+ e2

∂

∂z
. (3.4)

The equations (2.9a)–(2.9c) in ωH(t) are

ε∇x · ū = 0, (3.5a)

ε∇2
x ū = ∇xp̄, (3.5b)

εδ(ρ̄t + ερ̄T − HT ρ̄z) + ∇x · (ενρ̄ū − ∇xρ̄) = 0. (3.5c)

On the solid surface ∂ωs(t), (2.9d) becomes

ū = 0, (3.5d)

∇xρ̄ · ns = 0, (3.5e)

and (2.9e)–(2.9g) become, on z =H(x, t),

ū · m = −(1 − δ)
HT +Ht√

1 +H2
x

, (3.5f)

∇xρ̄ · m = ε(1 − νρ̄)
HT +Ht√

1 +H2
x

, (3.5g)

ū + v̄Hx = 0. (3.5h)

The chemistry interface condition, (2.9h), applies at the microscale interface z =H. Although we
will not use this condition until Section 4, it reads

1 − ρ̄ = −α

(
HT +Ht√

1 +H2
x

)
on z =H(x, t). (3.6)

3.2. Gas flow problem

We note that the equations for the gas velocity and pressure, namely (3.2a)–(3.2b) and (3.2d) in the
outer region, and (3.5a)–(3.5b) with (3.5d), (3.5f) and (3.5h) in the inner region, decouple from the
advection–diffusion problem for the vapour density. We therefore begin by analysing this gas flow prob-
lem (assuming that we know HT and H). We start with the outer region, in which the Stokes flow
equations are homogenised to Darcy’s law, via an analysis that is largely standard, although we take
care to understand how temporal oscillations in the dependent variables are accounted for. We then con-
sider the inner region of the domain and derive an effective flux boundary condition for the homogenised
Darcy’s law, using boundary layer and homogenisation analysis.
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3.2.1. Outer region
The homogenisation of Stokes flow to Darcy’s law has been performed in, for instance, [6, 14]. We
follow the analysis presented in [6] closely, but note that, in our evaporation setting, the velocity and the
pressure gradients in general all vary in time t as well as in space. We will therefore need to average the
dependent variables in time as well, although this does not significantly change the analysis or results
of the homogenisation.

We expand the dependent variables u and p in powers of ε, using superscript notation to denote the
order, for example, p = p(0) + εp(1) + . . . . At O(1) we find that (3.2b) becomes

∇ξ p(0) = 0, (3.7)

so that p(0) is independent of the microscale spatial variables ξ and η. At O(ε) we find that (3.2a)–(3.2b)
become

∇ξ · u(0) = 0, (3.8a)

∇2
ξ
u(0) = p(0)

Z e2 + ∇ξ p(1), (3.8b)

with the boundary condition u(0) = 0 on ∂ωs(t). As in [6], the problem is linear and so has solution of
the form:

u(0) = −K(ξ , η, t)p(0)
Z e2, p(1) = −�(ξ , η, t) · e2p

(0)
Z + π1(t, T), (3.9)

where K is a tensor, � a vector, and π1 is a scalar. Substituting these forms into (3.8) we obtain a ‘cell
problem’ for K and �, namely

∇ξ · K = 0, (3.10a)

∇2
ξ
K = ∇ξ� − I, (3.10b)

where I is the identity matrix, along with the boundary condition K = 0 on ∂ωs(t), and the assumption
of periodicity of K and � in ξ , η and t. We note that K and � depend on the short timescale t, since the
position of the solid inclusion ωs(t) depends on t.

We define the Darcy velocity to be the leading-order velocity, averaged over the cell, and over the
micro-timescale:

q := HT

∫ 1/HT

t=0

∫∫
ωf (t)

u(0) dξdη dt, (3.11)

where the average over the cell has been reduced to an integral over the fluid region since there is no
flow in the solid region and the cell has unit area. Since we are assuming a one-dimensional macroscale
flow with no X dependence, we note that q is unidirectional, q = qe2.

While p(0) is independent of ξ and η, it is not necessarily independent of t, and so we define the
time-averaged pressure to be

P(Z, T) := HT

∫ 1/HT

t=0

p(0) dt. (3.12)

Substituting the definition (3.9) of u(0) into (3.11), we obtain Darcy’s law:

q = −HT

∫ 1/HT

t=0

∫∫
ωf (t)

p(0)
Z K22 dξdη dt = −kPZ , (3.13)

using the definition of the average pressure P, and where we have defined the average permeability (for
the 1D flow) to be

k =
∫∫

ωf (t)

K22 dξdη. (3.14)
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The equations (3.10) are quasi-steady; the dependence of K and � on t is through the moving solid inclu-
sions only. Due to the periodicity of K in both time t and over the cell ωc(t), we see that the permeability,
k, given by (3.14), must be independent of t.

We have found the form of Darcy’s law but are yet to derive an expression of overall conservation of
mass. To do this we now look at the O(ε2) problem, where we find that (3.2a) becomes

∇ξ · u(1) + e2

∂

∂Z
· u(0) = 0. (3.15)

We also require periodicity of u(1) and impose u(1) = 0 on the solid surface ∂ωs(t). Integrating (3.15)
over the fluid-occupied region of the cell, ωf , using the divergence theorem, periodicity and boundary
condition for u(1), we find that

0 =
∫∫

ωf (t)

e2

∂

∂Z
· u(0) dξdη = e2

∂

∂Z
·
(∫∫

ωf (t)

u(0) dξdη

)
. (3.16)

Averaging over t (and using the fact that HT is independent of Z) gives the macroscale expression of
conservation of mass:

∂q

∂Z
= 0. (3.17)

This completes the analysis for the flow problem in the outer region: we have derived Darcy’s law (3.13)
and the average conservation of mass equation (3.17).

3.2.2. Inner region
We now study the boundary layer near to the macroscale evaporating interface in order to derive the
boundary conditions for the averaged flow problem in the outer region. We analyse the model (3.5a)–
(3.5b) with the boundary conditions (3.5d), (3.5f) and (3.5h).

At leading order, we find, in ωH(0) (which is bounded by the curve z =H(0)(x, t), rather than z =
H(x, t)),

∇x · ū(0) = 0, (3.18a)

∇xp̄
(0) = 0, (3.18b)

along with the boundary conditions, on z =H(0)(x, t),

ū(0) · m(0) = −(1 − δ)
HT +H(0)

t√
1 + (H(0)

x

)2
, (3.18c)

ū(0) + v̄(0)H(0)
x = 0, (3.18d)

where m(0) = (
1/
√

1 + (H(0))2
x

)
(H(0)

x , −1) is the leading-order unit normal to the interface. On the solid
surface ∂ωs(t),

ū(0) = 0, (3.18e)

along with periodicity of p̄(0) and ū(0) in x and t. We recall that ū(0) and p(0) are allowed to be functions
of x, z, t and T , but not of Z . However, we see from (3.18b) that p̄(0) is independent of x and z.

Integrating equation (3.18a) for u(0) over the cell ωH(0) (t) and using the divergence theorem, we find
that

0 =
∫

∂ωH(0)

u(0) · n ds. (3.19)
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Using the periodicity in x and boundary conditions (3.18c) on z =H(0)(x, t) and (3.18e) on the solid, we
see that

lim
z�→∞

∫
�

ū(0) · n ds = −
∫

z=H(0)

(1 − δ)(HT +H(0)
t )√

1 + (H(0)
x

)2
ds, (3.20)

which relates the flux of material through the evaporating interface to the far-field flux leaving the inner
layer through the curve �, as the height, z� of this curve is sent to infinity. We note (again by the diver-
gence theorem, by constructing a closed region bounded by two choices �1 and �2 for �, and by the
curves x = ±1/2 connecting them) that the left-hand side of (3.20) is independent of the choice of curve
�, with normal n, so long as this connects x = −1/2 to 1/2, passing through the gas-filled pore space
ωH(0) . We average (3.20) over the period [0, 1/HT], say, of t to find that

lim
z�→∞

HT

∫ 1/HT

t=0

∫
�

ū(0) · n ds dt = −(1 − δ)FHT , (3.21)

where we have defined

F =
∫ 1/HT

t=0

∫
z=H(0)

HT +H(0)
t√

1 + (H(0)
x

)2
ds dt =

∫ 1/HT

t=0

∫
z=H(0)

HT +H(0)
t dx dt

= HT

∫ 1/HT

t=0

∫
z=H(0)

dx dt, (3.22)

where we have used the fact that HT is independent of x, and that we may choose H and H such that the
average interface velocity perturbation is zero. We interpret this parameter F as the total flux of material
through the interface in a time period.

The value of F is not clear from considering only the dynamics of the gas. However, we may deter-
mine F by considering the conservation of mass of the liquid. Since we have assumed that the liquid
does not flow, the total flux of liquid that passes through the evaporating interface over the time period
1/HT (the time taken for the interface to move down through one repetition of the periodic pore-scale
geometry) must equal the volume of liquid contained in that periodic cell. This is precisely the porosity,
φ = |ωf |/|ωc|, of the porous medium, which is equivalently the cell volume occupied by fluid (and which
we assume is constant).

More formally, we consider the liquid occupied region ωl, illustrated in Figure 4, between z = −1
and the leading-order evaporating interface at z =H(0). The rate of change of liquid mass contained in
ωl is given by:

R =
∫

{z=−1}\ωs

dx −
∫

z=H(0)

HT +H(0)
t√

1 + (H(0)
x )2

ds, (3.23)

which is the rate at which liquid is gained as the liquid and solid move up through z = −1 (due to our
moving coordinate system) minus the rate at which it is lost through the evaporating interface z =H(0).
The total liquid lost or gained over the time period 1/HT must be zero as the process is periodic, and so

0 =
∫ 1/HT

t=0

R dt =
∫ 1/HT

t=0

[∫
{z=−1}\ωs

dx −
∫

z=H(0)

HT +H(0)
t√

1 + (H(0)
x )2

ds

]
dt. (3.24)

The second integral term here is F by the definition (3.22), while the first is precisely the porosity, φ,
of the porous medium. We therefore conclude that

F = φ =
∫∫

ωf (t)

dξdη, (3.25)

is the porosity of the porous medium.
We now return to our expression (3.21) of the average velocity flux leaving the inner region. Since

the left-hand side of (3.21) is independent of the choice of �, we may match directly with the outer
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Figure 4. Schematic showing the liquid region ωl, consisting of the pore space between z = −1 and
z =H(0).

problem by letting the height, z� of � become large, so that

lim
z�→∞

(∫
�

ū(0) · n ds

)
=
(∫

�

u(0) · n ds

) ∣∣∣∣
Z=0

, (3.26)

where on the right-hand side we consider � to be a curve within the outer cell ωf , joining ξ = −1/2
to 1/2. We choose � to be the flat curve at η = η∗, say, for some η∗ ∈ [ − 1/2, 1/2], wherever this lies
within ωf , and to follow the solid boundary ∂ωs wherever the solid obstructs the curve η = η∗. Since the
integral along � on the right-hand side of (3.26) is independent of the value of η∗, this integral must
equal its average over all possible η∗ ∈ [ − 1/2, 1/2]. Thus, the left-hand side of (3.21) is

lim
z�→∞

(
HT

∫ 1/HT

t=0

∫
�

ū(0) · n ds dt

)
=
(

HT

∫ 1/HT

t=0

∫
�

u(0) · n ds dt

) ∣∣∣∣
Z=0

=
(

HT

∫ 1/HT

t=0

∫∫
ωf

u(0) · e2 dξdη dt

) ∣∣∣∣
Z=0

= q|Z=0, (3.27)

which is precisely the (vertical) Darcy velocity. Substituting back into (3.21) (and using F = φ), we find
the flux condition for the outer problem, namely

q = −(1 − δ)φHT at Z = 0, (3.28)

which provides the boundary condition for our outer, Darcy flow, problem.
We note that we do not need to find a macroscale boundary condition analogous to the no-tangential-

slip condition (3.18d) that holds on the microscale, since the macroscale flow equations (3.13) and (3.17)
only require one boundary condition for q on Z = 0 (even in higher spatial dimensions), which is the
normal flux condition (3.28). Since we do not need to explicitly compute the microscale velocity field
ū(0), the condition (3.18d) has not been used explicitly in the analysis, although it is formally needed for
closure of the leading-order microscale system (3.18).

3.3. Advection–diffusion problem

Having homogenised the Stokes flow problem to Darcy’s law, with a flux boundary condition given in
terms of the average interface velocity HT , we may now study the advection–diffusion problem for the
vapour density ρ. This analysis is similar to that in [16], although we now study an advection–diffusion
process rather than simply a diffusion process. Indeed the system studied in [16] is the ‘no-flow’ limit,

https://doi.org/10.1017/S0956792522000419 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000419


820 E. K. Luckins et al.

δ → 1, of the present analysis. Our analysis in this section is also more general than [16], since we do not
at this stage specify the chemistry interface condition, leaving this to be discussed in Section 4. Finally,
we note that the matching process between the inner and intermediate regions given in [16] is not fully
correct. This should instead be done as described in Section 3.3.3 below, resulting in a slightly different
homogenised boundary condition to that derived in [16]. We provide a correction to [16] in Section 4.4.

As in [16], we will (in general) require a wider boundary layer of width O(ε1/2) at the interface Z = 0,
in addition to the O(ε) inner region, in order to smooth out the oscillations in the vapour density due
to the interface motion. This additional layer, which we refer to as the intermediate region, is necessary
in order to match between the inner and outer regions. In this intermediate region, we change to the
intermediate spatial variables, z̃ and x̃, defined by:

Z = ε1/2z̃, X = ε1/2x̃. (3.29)

In the intermediate region, we assume that the dependent variables are functions of both these interme-
diate variables z̃ and x̃ and of the microscale variables ξ and η. They also depend on both t and T but are
independent of the spatial macroscale, Z . We use the notation ρ̃ for the vapour density in the interme-
diate region. With this change of variables, the advection–diffusion equation (2.9c) in the intermediate
region becomes

εδ
(
ρ̃t + ερ̃T − HT

(
ρ̃η + ε1/2ρ̃z̃

))+ εũ ·
(

∇ξ + ε1/2e2

∂

∂ z̃

)
ρ̃

=
(

∇2
ξ
+ ε1/2

(
∇ξ · e2

∂

∂ z̃
+ e2

∂

∂ z̃
· ∇ξ

)
+ ε

∂2

∂ z̃2

)
ρ̃. (3.30a)

As in the outer region, ρ̃ is periodic with period 1, in ξ , η, and with period 1/HT , in t, and on the solid
∂ωs(t), the boundary condition (2.9d) becomes(

∇ξ + ε1/2e2

∂

∂ z̃

)
ρ̃ · ns = 0. (3.30b)

We note that the intermediate problem (3.30) for ρ̃ depends on the velocity ũ, but for the gas flow
analysis in Section 3.2 we did not need to use information from this intermediate region. We will see
that, for the analysis of the advection–diffusion problem in the intermediate region, we do not need to
know anything about ũ, except to assume it is well defined.

Since (3.30) involves powers of ε1/2, we expand the dependent variables (in all of the inner, inter-
mediate and outer regions) in powers of ε1/2. We summarise the key facets of the analysis of the
advection–diffusion problem, in the inner, intermediate and outer regions, as shown in Figure 5.

3.3.1. Outer region
We first analyse the vapour advection–diffusion problem (3.2c) with (3.2e), in the outer region of the
domain. At leading order in ε, (3.2c) becomes

∇2
ξ
ρ(0) = 0, (3.31a)

and the boundary condition (3.2e) becomes

∇ξρ
(0) · ns = 0 on ∂ωs(t), (3.31b)

which must be solved along with periodicity of ρ(0) in ξ and η. We multiply the equation (3.31a) by
ρ(0) and integrate over the cell, using periodicity in ξ and η and the boundary condition to show that
ρ(0)(t, Z, T) is independent of the microscale spatial variables ξ and η. At O(ε1/2) we obtain an identical
problem for ρ(1/2), and therefore find that ρ(1/2)(t, Z, T) is also independent of ξ , η.

At O(ε) the equation (3.2c) reads

δ(ρ(0)
t − HTρ

(0)
η

) + u(0) · ∇ξρ
(0) = ∇2

ξ
ρ(1) +

(
∇ξ · e2

∂

∂Z
+ e2

∂

∂Z
· ∇ξ

)
ρ(0), (3.32a)
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Figure 5. Summary of the results of the analysis of the advection–diffusion problem, at each order
and in each region of the domain. The red arrows show the matchings leading to the effective interface
conditions: the horizontal arrows at O(1) illustrate the leading-order vapour density matchings (for the
chemistry interface condition that we will consider later in Section 4), and the diagonal arrows show
the leading-order vapour flux matchings.

subject to the periodicity of ρ(1) in ξ , η, and t and, from (3.2e), the boundary condition:

(∇ξρ
(1) + e2ρ

(0)
Z ) · ns = 0 on ∂ωs(t). (3.32b)

We note that the advection term at this order is zero since ρ(0) is independent of the micro-lengthscale
and so, as in [16], we integrate (3.32a) over the cell to find that ρ(0)

t = 0, and thus ρ(0) is a function of Z
and T only.

The O(ε) problem therefore reduces to ∇2
ξ
ρ(1) = 0 with the boundary condition (3.32b). We recall

that ρ(1) is a function of ξ , η, t, Z and T . Exploiting the linearity of the system, we write

ρ(1) = Wρ(0)
Z + F(0), (3.33)

where F(0)(t, Z, T) is independent of ξ and η, and W(ξ , η, t) satisfies the cell problem:

∇2
ξ
W = 0 in ωf (t), (3.34a)

(∇ξ W + e2) · ns = 0 on ∂ωs(t), (3.34b)

W periodic in ξ , η and t. (3.34c)

We will not need any information from the order O(ε3/2) problem in the outer region, since the O(ε2)
problem (below) has no dependence on ρ(3/2) and neither will we need information from O(ε3/2) in order
to derive the leading-order effective interface conditions. We therefore do not study the equations at this
order. At O(ε2), we find that (3.2c) becomes

δ
(
ρ(0)

T − HTρ
(0)
Z + ρ(1)

t − HTρ
(1)
η

)+ ∇ξ · (ρ(1)u(0) + ρ(0)u(1) − (∇ξρ
(2) + e2ρ

(1)
Z

))
+ e2

∂

∂Z
· (ρ(0)u(0) − (∇ξρ

(1) + e2ρ
(0)
Z

))= 0, (3.35a)

and the boundary condition (3.2e) on ∂ωs(t) becomes(∇ξρ
(2) + e2ρ

(1)
Z

) · ns = 0, (3.35b)

which must be solved along with the periodicity of ρ(2). Integrating (3.35a) over the fluid-occupied region
of the cell, ωf (t), using the divergence theorem, and applying the boundary and periodicity conditions
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for both ρ(i) and for u(i), we find

δφ(ρ(0)
T − HTρ

(0)
Z ) + δ

d

dt

(∫∫
ωf (t)

ρ(1) dξdη

)

+
∫∫

ωf (t)

e2

∂

∂Z
· (ρ(0)u(0) − (∇ξρ

(1) + e2ρ
(0)
Z )
)

dξdη = 0, (3.36)

where we have used a transport theorem in t, which reads, for a general function F,

d

dt

(∫∫
ωf (t)

F dξdη

)
=
∫∫

ωf (t)

Ft dξdη −
∫

∂ωs(t)

FHTe2 · ns ds

=
∫∫

ωf (t)

Ft dξdη −
∫∫

ωf (t)

HTFη dξdη. (3.37)

This transport theorem encorporates the contributions to the total time derivative of the integral due to
the time derivative of the integrand and the changing shape of the integration domain ωf (t). Since ωf (t)
changes by the solid inclusions moving up through the domain (in the e2 direction), there is no e1 term.
The second line of (3.37) follows from the divergence theorem.

Using the form of ρ(1) given in (3.33) and the fact that ρ(0) is independent of ξ and η, equation (3.36)
becomes

δφ(ρ(0)
T − HTρ

(0)
Z ) + δ

d

dt

(∫∫
ωf (t)

ρ(1) dξdη

)

= e2

∂

∂Z
·
(

ρ(0)

∫∫
ωf (t)

u(0) dξdη − ρ(0)
Z

∫∫
ωf (t)

(∇ξ W + e2) dξdη

)
. (3.38)

Averaging over t, the total-time-derivative term integrates to zero by the periodicity of ρ(1) in t, and so
we arrive at a homogenised advection–diffusion equation describing the evolution of ρ(0), namely

δφ(ρ(0)
T − HTρ

(0)
Z ) + ∂

∂Z

(
ρ(0)q −Dρ(0)

Z

)= 0. (3.39)

We note that, although W and the cell structure ωf vary with t (as the solid microstructure moves up
through the domain), due to the periodicity of W over the cell and since the volume of the fluid-occupied
region of the cell, ωf , remains uniform, the effective diffusivity of the medium, taking into account the
solid microstructure, is given by:

D := e2 ·
(∫∫

ωf (t)

(∇ξ W + e2

)
dξdη

)
=
∫∫

ωf (t)

(
Wη + 1

)
dξdη, (3.40)

and is independent of t.

3.3.2. Intermediate region
We next consider the intermediate region, where the model is given by (3.30). The analysis of the inter-
mediate region is closely linked with that of the inner region, which we will present in Section 3.3.3
below. We will require results from the inner region in order to complete the analysis in the intermediate
region; these are highlighted in the discussion.

At O(1), equation (3.30a) becomes simply ∇2
ξ
ρ̃(0) = 0 with (3.30b) giving homogeneous Neumann

boundary conditions on the solid, along with the periodicity in t and at the cell boundary. Thus, we
conclude, as in the outer region, that ρ̃(0) is independent of ξ and η.

At O(ε1/2) we find the problem (3.30a) in ωf becomes

∇2
ξ
ρ̃(1/2) = 0, (3.41a)
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with periodicity and the boundary condition (3.30b) reading(∇ξ ρ̃
(1/2) + e2ρ̃

(0)
z̃

) · ns = 0 on ∂ωs. (3.41b)

As in the outer problem (at O(ε)), we can exploit the linearity of (3.41) to write ρ̃(1/2), which we recall
is allowed to be a function of ξ , η, t, z̃ and T , as:

ρ̃(1/2) = Wρ̃
(0)
z̃ + f̃ (1/2), (3.42)

where W(ξ , η, t) is the solution of the cell problem (3.34), and f̃ (1/2) is independent of ξ and η.
The O(ε) version of (3.30a) is

δρ̃(0)
t = ∇2

ξ
ρ̃(1) +

(
∇ξ · e2

∂

∂ z̃
+ e2

∂

∂ z̃
· ∇ξ

)
ρ̃(1/2), (3.43a)

in ωf , along with periodicity and the boundary condition (3.30b), which at O(ε) reads(∇ξ ρ̃
(1) + e2ρ̃

(1/2)
z̃

) · ns = 0 on ∂ωs. (3.43b)

There are no advection terms in (3.43a) since ∇ξ ρ̃
(0) = 0. Similarly to the derivation of (3.39) in the

outer problem (at O(ε2)), we now integrate (3.43a) over ωf , using (i) the fact that ρ̃(0) is independent of
ξ and η, (ii) the divergence theorem, (iii) the boundary condition (3.43b), (iv) the periodicity over the
cell, and (v) the form (3.42) of ρ̃(1/2). The outcome is that ρ̃(0) satisfies the diffusion equation:

δφρ̃(0)
t =Dρ̃

(0)
z̃z̃ , (3.44)

on the fast timescale t, and the intermediate lengthscale z̃. Here D, the effective diffusivity, is given by
(3.40). We note that the solution ρ̃(0) must be periodic in t and, by matching with the outer problem
at leading order, we must have ρ̃(0) → ρ(0)|Z=0 as z̃ → ∞. We may also match with the inner region at
leading order. In Section 3.3.3, we will show that this matching gives the condition ρ̃

(0)
z̃ = 0 at z̃ = 0.

The solution of (3.44) is uniquely determined by these conditions (this uniqueness of solution may be
shown by an energy method, in a similar way to in the Appendix of [16]), and is given by:

ρ̃(0) = ρ(0)|Z=0. (3.45)

We therefore conclude that ρ̃(0) is, in fact, independent both of z̃ and of t (since ρ(0) is independent of t).
Furthermore, since ρ̃

(0)
z̃ is therefore everywhere 0, from (3.42) we see that ρ̃(1/2) is in fact independent of

ξ and η.
With this knowledge we return to the O(ε) problem (3.43), and we see that (3.43a) reduces to simply

∇2
ξ
ρ̃(1) = 0. Arguing again by linearity, we see (3.43) therefore has solution:

ρ̃(1) = Wρ̃
(1/2)
z̃ + f̃ 1, (3.46)

where W(ξ , η, t) is the solution of the cell problem (3.34), and f̃ 1 is independent of ξ and η.
The final order of interest is O(ε3/2). Here, we find that (3.30a) becomes, in ωf ,

δ
(
ρ̃(1/2)

t − HT ρ̃
(1/2)
η

)= ∇ξ · (∇ξ ρ̃
(3/2) + e2ρ̃

(1)
z̃

)+ e2

∂

∂ z̃
· ∇ξ ρ̃

(1) + ρ̃
(1/2)
z̃z̃ (3.47a)

(where there are no additional advection terms since both ρ̃(0) and ρ̃(1/2) are independent of the spatial
microscale, and ρ̃

(0)
z̃ = 0). We also have the usual periodicity, while the boundary condition (3.30b)

reads (∇ξ ρ̃
(3/2) + e2ρ̃

(1)
z̃

) · ns = 0 on ∂ωs. (3.47b)

Again we argue as for the O(ε2) problem in the outer region: we integrate the equation (3.47a) over the
cell, using the transport theorem (3.37), the form (3.46) and apply both the boundary condition (3.47b)
and periodicity, to find that

δφρ̃(1/2)
t =Dρ̃

(1/2)
z̃z̃ . (3.48a)
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We have therefore derived an effective equation for ρ̃(1/2)(t, z̃, T) in the intermediate layer. The solution
of (3.48a) must be periodic in t. Matching with the outer region, we see that we must have

ρ̃
(1/2)
z̃ → ρ(0)

Z |Z=0 as z̃ → ∞. (3.48b)

We must also match with the inner region to close this problem for ρ̃(1/2). As we will discuss in Section
3.3.3, there will be two matching conditions that relate ρ̃(1/2) and ρ̃

(1/2)
z̃ to the inner variables, namely

ρ̃(1/2) = lim
z→∞

ρ̄(1/2) or ρ̃
(1/2)
z̃ = lim

z→∞
ρ̄(1)

z at z̃ = 0. (3.48c)

(These are the matching conditions (3.50c) and (3.50e) given below.) Regardless of which of these
two matching conditions (3.48c), we view as the boundary condition closing (3.48), the time-periodic
solution of (3.48) is unique. (The other condition (3.48c) then provides a far-field condition for the
inner problem.) Unlike for ρ̃(0), where the matching with the inner region required the solution of (3.34)
to be independent of t and z̃, we will see in Section 4 that the ρ̃(1/2) problem (3.48) has a solution with
non-trivial dependence on t and z̃, at least for certain chemistry interface conditions.

In summary, we have seen that the leading-order solution ρ̃(0) is constant through the intermediate
region, but that the O(ε1/2) correction, ρ̃(1/2), satisfies the effective diffusion equation (3.48a). By the
matching (3.48b), we see that this problem (3.48) describes the evolution of the leading-order vapour
flux through the intermediate region. It is precisely on this intermediate lengthscale z̃ that temporal
oscillations in the leading-order vapour flux coming out of the inner region (off the evaporating interface)
are smoothed out by diffusion.

3.3.3. Inner region
We now study the advection–diffusion problem for ρ̄ and H in the inner region, namely (3.5c) with
(3.5e) and (3.5g), with periodicity in x and t, and the appropriate matching conditions (given by (3.50),
discussed below). The problem is closed using the chemistry condition (3.6) on z =H(0), although we
will not need to use this in the analysis of this section.

We will also require several results from the intermediate region, derived in Section 3.3.2, which we
will incorporate by matching between the inner and intermediate regions. We note that this matching
between the inner region, where there is a single variable z in the e2 direction, and the intermediate
region, where we have both η and z̃, is a subtle process. As z grows and we leave the inner region, we
still expect fine scale oscillations in ρ̄ due to the solid microstructure. In the limit z → ∞, we must
therefore introduce multiple lengthscales by introducing the additional variable η, and assuming that ρ̄

depends on both η and z independently in this limit. Thus, our derivatives in the limit z → ∞ must be
replaced with the multiple scales ansatz:

∇x → ∇ξ + e2

∂

∂z
as z → ∞. (3.49)

We derive the Van Dyke matching conditions between the inner and intermediate regions, following [4],
and the conditions we will need for our analysis are as follows:

lim
z→∞

(ρ̄(0)) = ρ̃(0)|z̃=0, (3.50a)

lim
z→∞

(ρ̄(1/2)
z ) = ρ̃

(0)
z̃ |z̃=0, (3.50b)

lim
z→∞

(ρ̄(1/2) − zρ̃(0)
z̃ |z̃=0) = ρ̃(1/2)|z̃=0, (3.50c)

lim
z→∞

(ρ̄(1)
zz ) = ρ̃

(0)
z̃z̃ |z̃=0, (3.50d)

lim
z→∞

(
ρ̄(1)

z − z

2
ρ̃

(0)
z̃z̃ |z̃=0

)
= ρ̃

(1/2)
z̃ |z̃=0, (3.50e)
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lim
z→∞

(
ρ̄(1) − zρ̃(1/2)

z̃ |z̃=0 − z2

2
ρ̃

(0)
z̃z̃ |z̃=0

)
= ρ̃(1)|z̃=0. (3.50f)

We note that the factors of z and z2 in these matching conditions (3.50) are the growing lengthscale z,
not η, and we emphasise that ρ̄ i

z = ρ̄ i
z(η, z) in this large-z limit.

At leading order, the inner advection–diffusion problem (3.5c), in ωH(0) , becomes

∇2
x ρ̄

(0) = 0, (3.51a)

which must be solved with periodicity in x and t, while the boundary conditions (3.5e) and (3.5g)
become

∇xρ̄
(0) · ns = 0 on ∂ωs, (3.51b)

∇xρ̄
(0) · m(0) = 0, on z =H(0). (3.51c)

Multiplying (3.51a) by ρ̄(0), integrating over the cell (using divergence theorem), and using the no-flux
boundary conditions (3.51b)–(3.51c) and periodicity, we find that∫∫

ωH(0)

|∇xρ̄
(0)|2 dxdz = lim

z→∞

∫
�

ρ̄(0)∇xρ̄
(0) · n ds, (3.52)

where, as in Section 3.2.2, � is any curve through ωH(0) from x = −1/2 to x = 1/2, at height z, with
normal n. As we take the limit z → ∞, we introduce the multiple scales via (3.49) and use the matching
(3.50a) so that (3.52) becomes∫∫

ωH(0)

|∇xρ̄
(0)|2 dxdz =

∫
�

ρ̃(0)(∇ξ ρ̃
(0) + e2ρ̃

(0)
z ) · n ds. (3.53)

In the intermediate layer, we found that the leading-order density ρ̃(0) is a function only of t and T .
Thus, the right-hand side of (3.53) is zero, and we conclude from (3.53) that ρ̄(0) is independent of
x and z. Furthermore, since in the intermediate layer ρ̃(0) is independent of z̃, we may match directly
through the intermediate layer at this order, to see that

ρ̄(0) = ρ̃(0)|z̃=0 = lim
z̃→∞

ρ̃(0) = ρ(0)|Z=0. (3.54)

Thus, since ρ(0) in the outer region is independent of t, we also know that ρ̄(0) is independent of t.
At the next order, O(ε1/2), of the inner problem (3.5c) we find the same problem for ρ̄(1/2) as we had

for ρ̄(0) at leading order, namely, in ωH(0) ,

∇2
x ρ̄

(1/2) = 0, (3.55a)

which we solve with periodicity in x and t, and the boundary conditions (3.5e) and (3.5g) become

∇xρ̄
(1/2) · ns = 0, on ∂ωs, (3.55b)

∇xρ̄
(1/2) · m(0) = 0, on z =H(0). (3.55c)

We might expect there to be additional terms in the O(ε1/2) problem, from expanding H=H(0) +
ε1/2H(1/2) + ... and from evaluating the boundary conditions at H(0) rather than H. However, these terms
are zero, since ρ̄(0) is independent of the microscale. Integrating (3.55a) over the domain ωH(0) , and using
the divergence theorem, periodicity and the boundary conditions (3.55b)–(3.55c), we find that

0 = lim
z→∞

∫
�

∇xρ̄
(1/2) · n ds = lim

z→∞

∫
�

(
∇ξ + e2

∂

∂z

)
ρ̄(1/2) · n ds, (3.56)

where we have made use of the multiple scales ansatz (3.49). Using the matching condition (3.50c), we
see that

ρ̄(1/2) ∼ zρ̃(0)
z̃ |z̃=0 + ρ̃(1/2)|z̃=0 = ρ̃

(0)
z̃ |z̃=0 (z + W(ξ , η, t)) as z → ∞, (3.57)
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where for the equality we have used the form (3.42) of ρ̃(1/2). (We note that the form of ρ̄(1/2) given by
(3.57) is compatible with the matching condition (3.50b) precisely since the z derivative in (3.50b) is
only with respect to the growing z variable, and not η.) Substituting (3.57) into (3.56), and since ρ̃(0) is
independent of ξ and η, we have

0 = ρ̃
(0)
z̃ |z̃=0

∫
�

(∇ξ W + e2

) · n ds. (3.58)

The integral on the right-hand side is independent of the choice of curve � by definition of W , and is
non-zero, and thus we conclude that ρ̃

(0)
z̃ |z̃=0 = 0. (This fact was used in the analysis of the intermediate

region, to show that ρ̃(0) is in fact everywhere independent of z̃, and that ρ̃(1/2) is independent of ξ

and η.)
Returning to the O(ε1/2) inner problem (3.55) once more, we multiply (3.55a) through by ρ̄(1/2) and

integrate over ωH(0) (much as for the O(1) inner problem), to find∫∫
ωH(0)

|∇xρ̄
(1/2)|2 dxdz = lim

z→∞

∫
�

ρ̄(1/2)∇xρ̄
(1/2) · n ds

= lim
z→∞

∫
�

ρ̄(1/2)

(
∇ξ + e2

∂

∂z

)
ρ̄(1/2) · n ds

= lim
z→∞

∫
�

(ρ̃0
z̃ |z̃=0)

2 (W + z)
(∇ξ W + e2

) · n ds, (3.59)

again using (3.49), and (3.57). Since ρ̃
(0)
z̃ |z̃=0 = 0, the right-hand side is 0 and thus ρ̄(1/2) is also

independent of ξ and η.
The final order of interest in the inner region is O(ε). At this order, (3.5c) becomes, in ωH(0) ,

∇2
x ρ̄

(1) = 0, (3.60a)

which must be solved with periodicity in x and t and the boundary conditions (3.5e) and (3.5g), which
become

∇xρ̄
(1) · ns = 0, on ∂ωs, (3.60b)

∇xρ̄
(1) · m(0) = (1 − νρ̄(0))

HT +H(0)
t√

1 + (H(0)
x

)2
, on z =H(0). (3.60c)

Again we have used the fact that ρ̄(0) is independent of x, z and t, as well as the fact that ū(0) is divergence
free in the microscale variables (as shown in Section 3.2.2). Since ρ̄(1/2) is independent of the spatial
microscale, we have no correction terms due to using the domain ωH(0) rather than ωH. The problem is
closed using the matching condition (3.50f) as z → ∞, which, since we know ρ̃(1) = Wρ̃(1/2) + f̃ (1) in the
intermediate region, is given by:

lim
z→∞

(ρ̄(1) − zρ̃(1/2)
z̃ |z̃=0) = ρ̃

(1/2)
z̃ |z̃=0W(ξ , η, t) + f̃ (1)

z̃ |z̃=0. (3.60d)

The problem (3.60) along with the appropriate chemistry boundary condition forms a closed system for
ρ̄(1) and H(0), given in terms of HT and ρ̃

(1/2)
z̃ |z̃=0.

However, without computing ρ̄(1) and H(0) we may derive the effective vapour–flux interface condi-
tion for the macroscale problem. Integrating (3.60a) over ωH(0) , using the divergence theorem, and the
periodicity and boundary conditions (3.60b)–(3.60c), we find that the total diffusive flux through the

https://doi.org/10.1017/S0956792522000419 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792522000419


European Journal of Applied Mathematics 827

evaporating interface equals the flux out of the inner cell as z → ∞, so that∫
z=H(0)

(1 − νρ̄(0))
HT +H(0)

t√
1 + (H(0)

x )2
ds = lim

z→∞

∫
�

∇xρ̄
(1) · n ds

= lim
z→∞

∫
�

(
∇ξ + e2

∂

∂z

)
ρ̄(1) · n ds

= ρ̃
(1/2)
z̃ |z̃=0

∫
�

(∇ξ W + e2

) · n ds, (3.61)

where for the final equality we have used the matching condition (3.60d), and the fact that ρ̃(1/2) is
independent of ξ and η.

Since W satisfies the cell problem (3.34), the function F := ∇ξ W + e2 is divergence free on the cell
ωf , and F · ns = 0 on the solid ∂ωs. The integral over the curve � in (3.61) is therefore independent of
the choice of � (by application of the divergence theorem). Similarly to the analysis of Section 3.2.2,
by choosing � to be the flat curve η = η∗ where this lies within ωf , and on the surface ∂ωs wherever the
solid obstructs the line η = η∗, we see that the integral in (3.61),∫

�

(∇ξ W + e2

) · n ds =
∫

{η=η∗}∩ωf

Wη + 1 dξ , (3.62)

is independent of the value of η∗. Thus, this integral is equal to its average over η∗,∫
�

(∇ξ W + e2

) · n ds =
∫∫

ωf

Wη + 1 dξdη =D, (3.63)

and so is precisely the effective diffusivity D. Substituting this into (3.61), we find

(1 − νρ̄(0))
∫

z=H(0)

HT +H(0)
t√

1 + (H(0)
x )2

ds =Dρ̃
(1/2)
z̃ |z̃=0, (3.64)

where we have used the fact that ρ̄(0) is independent of x and z to rearrange the left-hand side. This
equation (3.64) relates the instantaneous leading-order diffusive flux of vapour entering the intermedi-
ate layer, to the flux of vapour off the interface. We note that the integral on the left of (3.64) is the
instantaneous total interface velocity, and that this depends on t, since the shape and velocity of the
microscale interface, z =H(0), in general vary with t. This is the reason why we need an intermediate
layer: we could not match directly between the inner and outer regions because the leading-order outer
density flux ρ

(0)
Z is independent of the micro-timescale t. The role of the intermediate region is that it

allows these temporal oscillations to be smoothed out.
We now average (3.64) in t, using the fact that ρ̄(0) is independent of t and the definition (3.22) of F

(which from our discussion in Section 3.2.2 we know to be given by F = φ), to simplify the left-hand
side, to give

(1 − νρ̄(0))φHT =DHT

∫ 1/HT

t=0

ρ̃
(1/2)
z̃ |z̃=0 dt. (3.65)

We note that by integrating (3.48a) over the period of t, and using the periodicity of ρ̃(1/2), we must
have

0 = HT

∫ 1/HT

t=0

Dρ̃
(1/2)
z̃z̃ dt =

(
HT

∫ 1/HT

t=0

Dρ̃
(1/2)
z̃ dt

)
z̃

, (3.66)

so that the time-averaged diffusive flux of vapour through the intermediate region is independent of z̃. In
particular, we may therefore replace z̃ = 0 with the limit z̃ → ∞ in (3.65). We then apply the matching
condition:

lim
z̃→∞

ρ̃
(1/2)
z̃ = ρ(0)

Z |Z=0, (3.67)
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and the fact that ρ
(0)
Z is independent of t to find that

(1 − νρ̄(0))φHT =Dρ(0)
Z |Z=0. (3.68)

Finally, using (3.54), we see that (3.68) is an effective boundary condition for the macroscale leading-
order vapour density ρ(0), namely

(1 − νρ(0))φHT =Dρ(0)
Z at Z = 0. (3.69)

3.4. Summary so far

In summary, we have so far derived the following effective model in Z > 0,
∂q

∂Z
= 0, (3.70a)

q = −kPZ , (3.70b)

δφ(ρ(0)
T − HTρ

(0)
Z ) = ∂

∂Z

(Dρ(0)
Z − νρ(0)q

)
, (3.70c)

with the interface conditions at Z = 0:

q = −(1 − δ)φHT , (3.70d)

Dρ(0)
Z = (1 − νρ(0))φHT , (3.70e)

where the leading-order macroscale-dependent variables, q, P and ρ(0), are functions of the macroscale-
independent variables, Z and T , only, and the interface position H is a function of T only. The effective
permeability k and diffusivity D, given by (3.14) and (3.40), are found by solution of the cell problems
(3.10) and (3.34), respectively, for the specific pore space geometry.

We note that, by combining (3.70d) and (3.70e), we find that(
ρ(0)ν(q − δφHT) −Dρ(0)

Z

) |Z=0 = −φHT , (3.71)

and thus the total flux of vapour off the interface is equal to the flux of liquid into the interface. Therefore,
by assuming conservation of liquid mass on the microscale, we have ensured that our macroscale model
also conserves liquid mass.

We also note that the shape and velocity variations of the microscale interface do not affect these flux
boundary conditions (3.70d) and (3.70e) at all: we might have written these down with no thought about
the microscale behaviour. The chemistry interface condition will be analysed in the following section
and will provide one further effective interface condition at the macroscale evaporating interface Z = 0.
We will find that, for certain ranges of α, our detailed multiscale analysis is necessary in order to derive
this final interface condition and that here the microscale interface geometry does play a role.

4. Chemistry interface condition

We now close the homogenised model (3.70), derived in Section 3, by deriving the effective chemistry
interface condition on the evaporating interface. We recall that the microscale chemistry condition, given
by (3.6), takes the form:

1 − ρ̄ = −α
HT +Ht√

1 +H2
x

on z =H(x, t). (4.1)

In this section, we will look at several different distinguished limits, namely α = O(ε), α = O(ε1/2) and
α = O(1). As well as leading to different forms of the effective interface condition, we will also find
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Table 1. Summary and comparison of the main results of the chemistry interface condition, for each
range of α

α O(ε) O(ε1/2) O(1)
Effective chemistry ρ(0) = 1 ρ(0) = 1 −αφHT =L(1 − ρ(0))
interface condition
at Z = 0

Intermediate region No Yes Yes
needed?

Shape of the Varies to maintain Has spatially uniform Has constant normal
microscale interface a constant flux but time-dependent velocity, solution
z =H(0)? of vapour off normal velocity, of (4.17)

the interface solution of (4.9)

quite dramatically different microscale behaviours for the different ranges of α. The main findings in
each of these cases are summarised in Table 1.

4.1. Case α � 1

We begin with the case of small α � 1 so that the vapour density equilibrates to the saturation density
at much faster rate than the rate of interface motion. For α � 1, to leading order, the chemistry interface
condition (4.1) is

ρ̄(0) = 1 on z =H(0), (4.2)

so that ρ̄(0) ≡ 1 throughout the inner region, as it is independent of x, z and t. By matching at leading
order (through the intermediate region as before according to (3.54)), we derive the effective interface
condition:

ρ(0) = 1 on Z = 0, (4.3)

which closes the homogenised model (3.70) in this case. We note that in this case, the chemistry con-
dition becomes a Dirichlet condition on ρ(0), while the diffusive flux condition (3.70e) determines the
interface velocity HT .

For any α � 1 the Dirichlet boundary condition (4.3) is the correct macroscale interface condi-
tion. However, we next explore the different microscale behaviours of the distinguished limits α = O(ε)
(which contains the behaviour for α � ε) and α = O(ε1/2).

4.1.1. Case α = O(ε) or smaller
If α � ε1/2 then at O(ε1/2), the chemistry interface condition (4.1) becomes

ρ̄(1/2) = 0 on z =H(0). (4.4)

Since we know that ρ̄(1/2) is independent of the spatial variables x and z, we conclude that ρ̄(1/2) ≡ 0 is
always zero throughout the inner region. This is surprising: we have no O(ε1/2) correction term in the
inner region.

Furthermore, we can close the problem (3.48a) for ρ̃(1/2) in the intermediate region with the Dirichlet
boundary condition (3.48c, left), which is

ρ̃(1/2)|z̃=0 = lim
z→∞

ρ̄(1/2) = 0. (4.5)
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The unique time-periodic solution of (3.48) is then

ρ̃(1/2) = z̃ρ(0)
Z |Z=0, (4.6)

which is, in fact, independent of t. The intermediate region in this case is not performing its expected
function of smoothing temporal oscillations in the flux off the interface. Indeed, the flux of vapour
through the intermediate region, ρ

(0)
Z |Z=0, is constant: the intermediate region does nothing at this order.

Since (4.6) holds, the far-field condition (3.60d) for the inner region flux problem (3.60) becomes
simply

ρ̄(1) ∼ ρ(0)
Z |Z=0(z + W) as z → ∞. (4.7)

Thus, in the case when α � ε1/2, we could have greatly simplified the analysis of Section 3.3, as we do
not need an intermediate layer or an expansion in terms of O(ε1/2) at all.

Substituting (4.6) into (3.64) (and using the fact that ρ̄(0) = 1), we find that the instantaneous total
flux of vapour coming off the interface on the microscale, namely

(1 − ν)
∫

z=H(0)

HT +H(0)
t√

1 + (H(0)
x

)2
ds =Dρ(0)

Z |Z=0, (4.8)

is independent of t (since the right-hand side is independent of t). The shape and/or speed of the
microscale interface z =H(0)(x, t) must therefore vary in time as the solid microstructure moves up
through the cell in order to maintain this constant total flux off the interface. For instance, at times when
the fluid-occupied fraction of the curve z = 0 is smaller than average, the interface z =H(0)(x, t) must
move faster than average in order to maintain the same total evaporation flux. The shape and velocity of
the microscale interface z =H(0) may be found, along with ρ̄(1), by solving the problem (3.60). However,
we note that there is no need to compute this solution in order to understand the macroscale evaporation
process, since the homogenised model is not affected in any way by the details of the microscale inter-
face motion. Indeed, the macroscale, outer process informs the inner: the microscale interface shape and
speed adapt to maintain the t-independent vapour flux drawn off the interface by the macroscale density
gradient.

4.1.2. Case α = O(ε1/2)

We now suppose that α = O(ε1/2) and write α = βε1/2 with β = O(1). While ρ̄(0) satisfies the Dirichlet
condition (4.2) at leading order, at O(ε1/2) (4.1) becomes

β
HT +H(0)

t√
1 + (H(0)

x

)2
= ρ̄(1/2) on z =H(0). (4.9)

We recall that, like ρ̄(0), ρ̄(1/2) is independent of x and z (although unlike ρ̄(0) it may depend on t).
The value of ρ̄(1/2)(t) = ρ̃(1/2)|z̃=0 is found by solving the diffusion equation for ρ̃(1/2) in the intermedi-

ate region (3.48) (with the boundary condition (3.48c, right)). The two problems (3.60) and (3.48) are
therefore fully coupled by both (4.9) and the matching condition (3.60d) and must be solved simultane-
ously in order to understand the microscale interface motion. We note that we can simplify this problem
by deriving a new interface condition for ρ̃(1/2) that holds at z̃ = 0, rather than matching with ρ̄(1) in the
inner region. Specifically, we note from (3.64) that the instantaneous flux of vapour out of the inner
region is

Dρ̃
(1/2)
z̃ |z̃=0 = (1 − ν)

∫
z=H(0)

HT +H(0)
t√

1 + (H(0)
x )2

ds = (1 − ν)

β
Lρ̄(1/2) = (1 − ν)

β
Lρ̃

(1/2)
z̃=0 , (4.10)

where L = ∫
z=H(0) ds is the instantaneous length of the microscale interface. Equation (4.10) provides a

Robin boundary condition for the problem (3.48a), replacing the matching conditions (3.48c).
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In particular, we can use this expression for the instantaneous vapour flux (4.10) to argue that the
intermediate region is needed in this case of α = O(ε1/2), unlike in the case α = O(ε) above. We demon-
strate that the intermediate region is needed using a contradiction, and so suppose that the intermediate
region is not required, that is, that the flux through the intermediate region is constant in t and equal to
the far-field flux ρ

(0)
Z |Z=0. The solution ρ̃1/2 of (3.48) then takes form:

ρ̃(1/2) = ρ(0)
Z |Z=0z̃ + ρ̄(1/2)(t). (4.11)

From (4.10), we see that Lρ̄(1/2) must be independent of t, and since for a general pore-scale geometry L
varies in t, we therefore require that ρ̄(1/2) is non-constant in t (noting from (4.9) that we must have ρ̄(1/2)

non-zero in order for there to be an interface motion at all). This leads to the required contradiction, as
ρ̃(1/2) given by (4.11), with ρ̄(1/2) non-constant in t does not satisfy the diffusion equation (3.48a).

Thus, the instantaneous flux of vapour out of the inner region cannot be independent of t, and so
the intermediate region is needed to smooth the temporal oscillations in the vapour flux in this case
α = O(ε1/2).

4.2. Case α = O(1)

With α = O(1), the chemistry condition (4.1) relates the leading-order interface velocity to the leading-
order vapour density. At O(1), (4.1) reads

1 − ρ̄(0) = −α
HT +H(0)

t√
1 + (H(0)

x

)2
on z =H(0). (4.12)

We know from our analysis of Section 3.3.3 that ρ̄(0) is independent of x, z and t. Integrating (4.12) over
the interface z =H(0), and averaging in time, we see

(1 − ρ̄(0))HT

∫ 1/HT

t=0

∫
z=H(0)

ds dt = −αHT

∫ 1/HT

t=0

∫
z=H(0)

HT +H(0)
t√

1 + (H(0)
x

)2
ds dt

= −αφHT , (4.13)

using the definition (3.22) of F and the fact that F = φ as shown in Section 3.2.2.
We now define a new effective parameter, L, by

L= HT

∫ 1/HT

t=0

∫
z=H(0)

ds dt. (4.14)

We note in particular that although the definition of L is similar to that of F (given by (3.22)), the two
are not equal: L is the time-averaged length of the microscale interface (integrating with respect to ds),
whereas F was the average flux through the interface (integrating with respect to dx). Using the fact that
ρ̄(0) = ρ(0)|Z=0 from (3.54), we see that (4.13) becomes the effective interface condition:

(1 − ρ(0))L= −αφHT at Z = 0. (4.15)

This is the chemistry interface condition that closes the homogenised model in this case α = O(1). We
note that the presence of L in (4.15) means that the effective evaporation rate at the macroscale interface
is different (by a factor of L/φ) to that at the microscale interface. For longer, more tortuous interfaces
on the microscale, we expect the overall evaporation rate to be increased. This is intuitive, as the greater
the interface length, the more liquid can evaporate simultaneously.

We emphasise that, unlike the case α � 1 where the variations in shape and speed of the microscale
interface had no effect on the leading-order macroscale model, when α = O(1) we need to understand
the motion of the microscale interface z =H(0) in order to compute the effective parameterL and thereby
close the homogenised model (3.70).
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Figure 6. Microscale interface motion for different pore-scale geometries. The interface shape
t = f (x, y), or level sets of the f, are shown in blue at a number of times. The characteristics or rays are
straight lines, shown in green. Left: for a diamond-shaped solid obstacle, the solution is given explicitly
by (4.19). Centre and right: sketch of two different geometries with the same porosity, but different time
period and average interface length L.

The motion of the microscale interface z =H(0) is governed by (4.12). Since ρ̄(0) is independent
of x, z and t, we may consider ρ̄(0) to be a fixed, externally prescribed constant for the purposes of
determining the microscale interface motion. We note that in this case α = O(1), we may then compute
the density correction ρ̄(1) from (3.60), once the interface position H0(x, t) has been determined from
(4.12), although we do not need to do this to close the homogenised model.

The problem (4.12) is a non-linear first-order hyperbolic equation for H0(x, t). The problem is closed
by the requirement that H0 be periodic in both t and x and is constrained by the solid geometry ωs(t).
It is instructive to reformulate this problem for the interface position z =H(0)(x, t) as a problem for t =
f (x, y), in the stationary coordinate system. The equation (4.12) states that the normal interface velocity
is constant and equal to v := (1 − ρ̄(0))/α. In terms of f , (4.12) is therefore equivalent to

v = 1√
f 2
x + f 2

y

, (4.16)

or

f 2
x + f 2

y = 1

v2
, (4.17)

which is the well-known eikonal equation (see, for instance, [19]). In this formulation, we interpret the
interface at time t to be the level set t = f (x, y) of the surface f . There is a large literature concerning
solutions of the eikonal equation (4.17) motivated, in particular, by problems in optics. Our problem is
unusual in that we require our solution f to be periodic in x, and also that the shape of the interface is
periodic in time t, which is equivalent to the requirement that there exists a constant HT such that

f (x, y) + 1/HT = f (x, y + 1) (4.18)

for all x and y. These periodicity constraints in particular make this problem difficult to solve for gen-
eral pore-scale geometries. However, we note that for special geometries in which there are regions of
pore space with no obstacles in the path of the moving interface, we make progress analytically, using
Charpit’s method.

For instance, for the diamond geometry shown in Figure 6 (left), the interface moves uniformly down-
wards unimpeded by any obstacles, as a flat surface, in the regions |x| > |b|. The periodicity condition
(4.18) in this case can be replaced by the boundary condition that f (x, y) = 0 on y = 0, x ∈ [b, 1/2]. The
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solution in this case is

f (x, y) =

⎧⎪⎪⎨
⎪⎪⎩

−y

v
for x ∈

[
b,

1

2

]
and x ∈

[
−1

2
, −b

]
1

v

√
(b − x)2 + y2 for x ∈ [ − b, b] \ ωs.

(4.19)

The characteristics form an expansion fan from the points (b, 0) and ( − b, 0), and the interface shape in
the regions spanned by these expansion fans are arcs of circles. We note there is a shock or ridge along
the y-axis where characteristics meet; across this shock, the solution f is continuous. We note that, in
this case, the time period of the interface motion, 1/HT , is simply 1/v.

Given the solution f of (4.17), the effective interface length L is given by:

L= HT

∫ 1/HT

t=0

∫
t=f (x,y)

ds dt. (4.20)

For the example with diamond-shaped solid inclusions, we find from (4.15), along with the fact that HT =
v, that L= φ (this is true for any geometry where part of the interface can move vertically downwards
through the entire cell, unimpeded by solid obstacles). To demonstrate that L is not always equal to φ,
we consider two pore-scale geometries, illustrated in Figure 6 (centre and right), with the same porosity
φ but where the pore space of one consists simply of a straight vertical channel, while the other is a
thinner but more tortuous path. The average interface length L is larger for the first geometry than for
the second, so L �= φ for the second geometry. Furthermore, since the normal velocity of the microscale
interface is the same (v) for each case, the time taken to traverse the second, more tortuous cell geometry
is longer than that for the first, and so the average vertical velocity HT is greater for the first cell than for
the second.

Finally in this section, we note that the instantaneous vapour flux coming out of the inner region,
from (3.64), is

Dρ̃
(1/2)
z̃ |z̃=0 = − (1 − νρ̄(0))(1 − ρ̄(0))

α

∫
z=H(0)

ds, (4.21)

where we have used (4.12) and the fact that ρ̄(0) is independent of the microscale. We note that this
instantaneous vapour flux leaving the inner region does indeed vary on the fast-timescale, t, in general,
since we have seen that the instantaneous interface length,

∫
z=H(0) ds varies in time. Thus, while the

intermediate region was not required in the case α = O(ε), for this case α = O(1) (like the case α =
O(ε1/2)) we really do require the intermediate smoothing region in our asymptotic structure.

4.3. Summary of the homogenised model

In summary, we have derived the homogenised model (3.70), along with a chemistry interface condition,
which, depending on the size of α, manifests as either a Dirichlet boundary condition for the vapour
density ρ(0), or a relation between the interface velocity HT and the local vapour density at the interface.

Returning to variables Y = Z + H fixed with respect to the porous medium (rather than moving with
the macroscale evaporating interface), our homogenised model is

∂q

∂Y
= 0, (4.22a)

q = −kPY , (4.22b)

δφρ(0)
T + νqρ(0)

Y = ∂

∂Y

(Dρ(0)
Y

)
, (4.22c)

with the interface conditions at Y = H(T),

q = −(1 − δ)φHT , (4.22d)
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Dρ(0)
Y = (1 − νρ(0))φHT , (4.22e)

⎧⎨
⎩

−αφHT =L(1 − ρ(0)) if α = O(1),

ρ(0) = 1 if α ≤ O(ε1/2).
(4.22f)

Initial conditions for q, P and ρ(0), and boundary conditions at the surface of the porous medium close
the model.

We note that, for sufficiently small α � ε1/2, the homogenised model depends on the microstructure
only through the bulk effective parameters φ, D and k, whereas for α = O(1) there is additional depen-
dence on the average length L of the microscale evaporating interface. The analysis of this section has
also shown that the fine-scale behaviour at, and near, the macroscale interface is fundamentally different
for the different ranges of α. For α = O(ε) or smaller, it is the leading-order density gradient in the outer
problem that drives the system. The far-field gradient draws vapour off the interface, which must move
at an oscillating rate on the microscale in order to maintain the locally constant flux of vapour off the
interface. In this way the outer problem informs the inner, and so an intermediate smoothing region is
not needed. By contrast, for α = O(1), the local density value determines the evaporation rate, so that
the microscale interface moves with constant normal velocity independent of t. Since the vapour flux
leaving the interface therefore oscillates in time, the intermediate region is required to smooth out these
oscillations in order to match between the inner and outer regions.

4.4. Correction to previous article

Finally, we give a correction to [16]. The microscale model analysed in [16] has the same form as the
evaporation model (2.9), in the special case that there is no fluid flow (δ = 1, so that u = 0), with a
chemical-reaction-rate chemistry condition at the moving interface, directly analogous to the α = O(1)
case for our current evaporation setting. The structure of the homogenisation argument in [16] is correct.
However, the matching between the inner and intermediate regions is not fully correct; this should be
done as in Section 3.3.3 above. Furthermore, the conclusion of [16] that the microscale interface is flat
and moving at constant velocity is incorrect; as discussed in Section 4.2, the microscale interface should
in fact have a constant normal velocity, which does not result in a flat interface shape. From our analysis
above, we see that the correct homogenised model for the reactive decontamination problem studied in
[16], replacing the equations (4.74)–(4.75) in that paper, is, for Y > H(T)

CT = D
φ

CYY , (4.23a)

with, on Y = H(T)

CHT + D
φ

CY = β∗L
φ

C, (4.23b)

HT = −γβ∗L
φ

C (4.23c)

whereD is given by (3.40),L is given by (4.14) and φ, the porosity of the medium, is the liquid-occupied
area of the cell. The parameters β∗ and γ are as defined in [16]. The form of the boundary conditions
given in [16] is therefore accurate, but the effective parameter factors in those conditions are incorrect.

5. Discussion and conclusion

We have derived a homogenised model (4.22) for the motion of an evaporation front through porous
media, and describing the flow and advective–diffusive transport of vapour away from the evaporating
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interface. In particular, we have used a boundary layer analysis combined with homogenisation in both
time and space to derive the effective boundary conditions at the evaporating interface to apply to the
homogenised model. As is standard for homogenisation problems, the effect of the microstructure enters
the bulk equations through the effective parameters φ, k and D, which are the porosity, effective per-
meability and effective diffusivity, respectively. We have shown that the interface conditions describing
the conservation of mass across the interface also depend on the microstructure via the effective param-
eters φ and D. In particular, we found that the homogenised interface conditions do not depend on the
microscale oscillations in the shape and speed of the evaporating interface. The homogenised model was
closed by deriving a homogenised chemistry interface condition. The form of the microscale chemistry
interface condition, (characterised by α, ratio of the interface velocity to the rate at which the vapour
density reaches its equilibrium) was seen to affect the form of the corresponding effective interface con-
dition on the macroscale. For α � 1 so that the rate at which the vapour reaches its saturation point at the
interface is faster than the speed of the evaporating interface, we found a Dirichlet boundary condition on
the macroscale for the leading-order vapour density. For the case α = O(1), the homogenised boundary
condition gives the interface velocity in terms of an effective evaporation rate. This effective evaporation
rate for the homogenised model was shown to be different in general from the microscale evaporation
rate, altered by a factor of L/φ, where L is the average length of the microscale interface. The value of
L may be found for a given pore-scale geometry by solving an eikonal equation for the motion of the
microscale interface. From the discussion in Section 4.2, it seems likely that φ is an upper bound on L,
so that the effective evaporation rate is bounded above by the microscale evaporation rate. Further inves-
tigation is needed to establish whether or not this is true. If it is indeed true, then this upper bound on
the effective evaporation rate would correspond to a lower bound on the overall drying time of a porous
material, or equivalently an upper bound on the rate of offgassing, independent of the microstructure,
which is likely to be useful in industrial applications where drying is a production-limiting process, such
as pharmaceuticals and ceramics.

In addition to resulting in different effective interface conditions, we also saw different fine-scale
solution structures near the interface for different values of α. For α = O(1), the local vapour density
determines the rate of evaporation, forcing the microscale interface to move with a constant normal
velocity. Due to the solid inclusions, the flux of vapour from the microscale interface oscillates in time,
and we required a wider, intermediate boundary layer of O(ε1/2) about the evaporation front, over which
these temporal oscillations are smoothed out. By contrast when α � ε1/2, we found that the overall
gradient in the vapour density determines the rate of evaporation, with vapour being drawn off the
evaporating interface at a rate that cannot oscillate in time. Instead the microscale interface must adapt its
shape or speed in order maintain the locally constant vapour flux. Since there are no temporal oscillations
in this case, no intermediate smoothing layer is needed, and the structure of the asymptotic analysis is
greatly simplified. Between these two extremes, we found some elements of each case: for all α � 1 the
effective macroscale interface condition is a Dirichlet condition, but an intermediate smoothing layer is
required for α = O(ε1/2).

The parameters δ and ν were taken to be order one in the homogenisation analysis. As discussed
in Section 2.1, in many circumstances it may be reasonable to assume one or both of these is small.
Taking the limit(s) δ → 0 and or ν → 0 is commutable with the homogenisation analysis in this paper.
For simplicity, we assumed a two-dimensional porous medium, and we also assumed that the macroscale
problem was one-dimensional, with unidirectional flow and density gradients on the macroscale, and a
flat macroscale interface. We anticipate that our analysis will extend fairly straightforwardly to the case
of a flat evaporating interface (surface) within a three-dimensional porous medium. It is less clear how
our analysis might extend to a non-flat macroscale interface, since the macroscale interface shape may
impact the local shape and velocity of the microscale interface.

By assuming that the liquid was stationary, our analysis precluded effects due to capillarity, surface
tension and viscous forces. We determine the average interface length L purely by the removal of liquid
to become vapour, like an ‘etching’ problem, and this approximation may be unrealistic in many prac-
tical situations. An important area for future work is to include the flow of liquid, and the associated
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viscous and capillary effects, into this analysis. While we expect these processes to affect the microscale
interface shape and motion, we note that we expect the homogenised model within the gas phase to be
the same as in this paper: we anticipate that the fluid flow effects will affect L, but not the structure of
the homogenised evaporation model.

We note that our homogenisation of the advection–diffusion equation was very similar to the analysis
of [16], for a purely diffusive system. This was largely because, since the liquid density decreases as
it vaporises (δ < 1) the flow generated by the evaporation is away from the interface, so that (as in
Section 2.1) the lengthscale over which the vapour density varies is that of the entire porous medium.
In processes with δ > 1 (for instance, a reactive decontamination system such as that in [7, 16], with a
denser reaction product than reactant), fluid would flow in towards the interface, and we might anticipate
diffusive boundary layer structures at the interface.

Our homogenisation analysis shows how we may incorporate the effect of the pore microstructure
into the interface conditions for evaporation in porous media, and in particular quantifies the effect of
the microstructure on the evaporation rate, via the effective parameter L. Although in this paper we
modelled an evaporation process, our results are also pertinent to chemical reaction fronts in porous
media, where (as in Section 4.4) we likewise see the average interface length L impacting the effective
reaction rate. Crucial future work will be to compute the quantity L/φ for a variety of microstructures,
in order to quantify the effect that microscale geometry has on the macroscale rate of evaporation and
to solve our homogenised model in scenarios of practical interest to those working in both filtration and
decontamination.
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