Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T14:53:24.308Z Has data issue: false hasContentIssue false

Global matching and fluency attribution in familiarity assessment

Published online by Cambridge University Press:  03 January 2020

Haopei Yang
Affiliation:
Graduate Program in Neuroscience, Western University, London, Ontario, N6A 3K7, [email protected] The Brain and Mind Institute, Western University, London, Ontario, N6A 3K7, [email protected]://kohlermemorylab.org/
Stefan Köhler
Affiliation:
The Brain and Mind Institute, Western University, London, Ontario, N6A 3K7, [email protected]://kohlermemorylab.org/ Department of Psychology, Western University, London, Ontario, N6A 3K7, Canada.

Abstract

In the integrative memory model proposed by Bastin et al., familiarity is thought to arise from attribution of fluency signals. We suggest that, from a computational and anatomical perspective, this conceptualization converges with a global-matching account of familiarity assessment. We also argue that consideration of global matching and evidence accumulation in decision making could help further our understanding of the proposed attribution system.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barron, H. C., Garvert, M. M. & Behrens, T. E. J. (2016) Repetition suppression: A means to index neural representations using BOLD? Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences 371(1705). Available at: https://doi.org/10.1098/rstb.2015.0355.CrossRefGoogle ScholarPubMed
Brown, M. W. & Aggleton, J. P. (2001) Recognition memory: What are the roles of the perirhinal cortex and hippocampus? Nature Reviews. Neuroscience 2(1):5161. Available at: https://doi.org/10.1038/35049064.CrossRefGoogle ScholarPubMed
Bussey, T. J. & Saksida, L. M. (2007) Memory, perception, and the ventral visual-perirhinal-hippocampal stream: Thinking outside of the boxes. Hippocampus 17(9):898908. Available at: https://doi.org/10.1002/hipo.20320.CrossRefGoogle ScholarPubMed
Dew, I. T. Z. & Cabeza, R. (2013) A broader view of perirhinal function: From recognition memory to fluency-based decisions. Journal of Neuroscience 33(36):14466–74. doi: 10.1523/JNEUROSCI.1413-13.2013.CrossRefGoogle ScholarPubMed
Grill-Spector, K., Henson, R. & Martin, A. (2006) Repetition and the brain: Neural models of stimulus-specific effects. Trends in Cognitive Sciences 10(1):1423. Available at: https://doi.org/10.1016/j.tics.2005.11.006.CrossRefGoogle ScholarPubMed
Hintzman, D. L. (1984) MINERVA 2: A simulation model of human memory. Behavior Research Methods, Instruments & Computers 16(2):96101. Available at: https://doi.org/10.3758/BF03202365.CrossRefGoogle Scholar
Hutchinson, J. B., Uncapher, M. R. & Wagner, A. D. (2009) Posterior parietal cortex and episodic retrieval: Convergent and divergent effects of attention and memory. Learning & Memory (Cold Spring Harbor, N.Y. 16(6):343–56. Available at: https://doi.org/10.1101/lm.919109.CrossRefGoogle ScholarPubMed
Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R. & Wagner, A. D. (2014) Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex 24(1):4966. doi: 10.1093/cercor/bhs278.CrossRefGoogle ScholarPubMed
Jacoby, L. L., Kelley, C. M. & Dywan, J. (1989) Memory attributions. In: Varieties of memory and consciousness: Essays in honour of Endel Tulving, ed. Roediger, H. L. & Craik, F. I. M., pp. 391422. Erlbaum.Google Scholar
LaRocque, K. F., Smith, M. E., Carr, V. A., Witthoft, N., Grill-Spector, K. & Wagner, A. D. (2013) Global similarity and pattern separation in the human medial temporal lobe predict subsequent memory. Journal of Neuroscience 33(13):5466–74. doi: 10.1523/JNEUROSCI.4293-12.2013.CrossRefGoogle ScholarPubMed
Montefinese, M., Zannino, G. D. & Ambrosini, E. (2015) Semantic similarity between old and new items produces false alarms in recognition memory. Psychological Research 79(5):785–94. Available at: https://doi.org/10.1007/s00426-014-0615-z.CrossRefGoogle ScholarPubMed
Norman, K. A. (2010) How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model. Hippocampus 20(11):1217–27. doi: 10.1002/hipo.20855.CrossRefGoogle ScholarPubMed
Norman, K. A. & O'Reilly, R. C. (2003) Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review 110(4):611–46. Available at: https://doi.org/10.1037/0033-295X.110.4.611.CrossRefGoogle ScholarPubMed
Ratcliff, R. (1978) A theory of memory retrieval. Psychological Review 85(2):59108. Available at: https://doi.org/10.1037/0033-295X.85.2.59.CrossRefGoogle Scholar
Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. (2016b) Diffusion decision model: Current issues and history. Trends in Cognitive Sciences 20(4):260–81. Available at: https://doi.org/10.1016/j.tics.2016.01.007.CrossRefGoogle Scholar
Shadlen, M. N. & Newsome, W. T. (2001) Neural Basis of a Perceptual Decision in the Parietal Cortex (Area LIP) of the Rhesus Monkey. Journal of Neurophysiology 86(4):1916–36. Available at: https://doi.org/10.1152/jn.2001.86.4.1916.CrossRefGoogle ScholarPubMed
Suzuki, W. A. & Naya, Y. (2014) The perirhinal cortex. Annual Review of Neuroscience 37(1):3953. Available at: https://doi.org/10.1146/annurev-neuro-071013-014207.CrossRefGoogle ScholarPubMed
Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. (2005) Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences 9(9):445–53. Available at: http://doi.org/10.1016/j.tics.2005.07.001.CrossRefGoogle Scholar