Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T04:44:43.577Z Has data issue: false hasContentIssue false

Interactions with the integrative memory model

Published online by Cambridge University Press:  03 January 2020

Christine Bastin
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be
Gabriel Besson
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be
Emma Delhaye
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be
Adrien Folville
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be
Marie Geurten
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be
Jessica Simon
Affiliation:
Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]://www.psyncog.uliege.be
Sylvie Willems
Affiliation:
Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]://www.psyncog.uliege.be Psychological and Speech Therapy Consultation Center & Psychology and Neuroscience of Cognition, CPLU, University of Liège, 4000Liège, [email protected]
Eric Salmon
Affiliation:
GIGA-Cyclotron Research Centre In Vivo Imaging & Psychology and Neuroscience of Cognition, University of Liège, 4000Liège, [email protected]@[email protected]@[email protected]@uliege.behttp://www.giga.uliege.be Memory Clinic, Centre Hospitalier Universitaire (CHU) Liège, 4000Liège, Belgium.

Abstract

The integrative memory model formalizes a new conceptualization of memory in which interactions between representations and cognitive operations within large-scale cerebral networks generate subjective memory feelings. Such interactions allow to explain the complexity of memory expressions, such as the existence of multiples sources for familiarity and recollection feelings and the fact that expectations determine how one recognizes previously encountered information.

Type
Authors' Response
Copyright
Copyright © Cambridge University Press 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aggleton, J. P. (2010) Understanding retrosplenial amnesia: Insights from animal studies. Neuropsychologia 48(8):2328–38. doi: 10.1016/j.neuropsychologia.2009.09.030.CrossRefGoogle ScholarPubMed
Aggleton, J. P. (2012) Multiple anatomical systems embedded within the primate medial temporal lobe: Implications for hippocampal function. Neuroscience and Biobehavioral Reviews 36(7):1579–96. doi: 10.1016/j.neubiorev.2011.09.005.CrossRefGoogle ScholarPubMed
Aggleton, J. P. & Brown, M. W. (1999) Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences 22:425–89.CrossRefGoogle ScholarPubMed
Aggleton, J. P., Dumont, J. R. & Warburton, E. C. (2011) Unraveling the contributions of the diencephalon to recognition memory: A review. Learning and Memory 18(6):384400. doi: 10.1101/lm.1884611.CrossRefGoogle ScholarPubMed
Ahmed, S., Irish, M., Loane, C., Baker, I., Husain, M., Thompson, S., Blanco-Duque, C., Mackay, C., Zamboni, G., Foxe, D., Hodges, J. R., Piguet, O. & Butler, C. (2018) Association between precuneus volume and autobiographical memory impairment in posterior cortical atrophy: Beyond the visual syndrome. NeuroImage: Clinical 18:822–34. doi: 10.1016/j.nicl.2018.03.008.CrossRefGoogle ScholarPubMed
Ally, B. A., Hussey, E. P., Ko, P. C. & Molitor, R. J. (2013) Pattern separation and pattern completion in Alzheimer's disease: Evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus 23(12):1246–58. doi: 10.1002/hipo.22162.CrossRefGoogle ScholarPubMed
Auger, S. D., Mullally, S. L. & Maguire, E. A. (2012) Retrosplenial cortex codes for permanent landmarks. PLOS ONE 7(8):e43620. doi: 10.1371/journal.pone.0043620.CrossRefGoogle ScholarPubMed
Barbeau, E. J., Pariente, J., Felician, O. & Puel, M. (2011) Visual recognition memory: A double anatomo-functional dissociation. Hippocampus 21(9):929–34. doi: 10.1002/hipo.20848.Google ScholarPubMed
Barense, M. D., Rogers, T. T., Bussey, T. J., Saksida, L. M. & Graham, K. S. (2010) Influence of conceptual knowledge on visual object discrimination: Insights from semantic dementia and MTL amnesia. Cerebral Cortex 20(11):2568–82. doi: 10.1093/cercor/bhq004.CrossRefGoogle ScholarPubMed
Bayley, P. J., Wixted, J. T., Hopkins, R. O. & Squire, L. R. (2008) Yes/no recognition, forced-choice recognition, and the human hippocampus. Journal of Cognitive Neuroscience 20(3):505–12. doi: 10.1162/jocn.2008.20038. Available at: https://doi.org/10.1162/jocn.2008.20038.CrossRefGoogle ScholarPubMed
Boccia, M., Silveri, M. C., Sabatini, U., Guariglia, C. & Nemmi, F. (2016) Neural underpinnings of the decline of topographical memory in mild cognitive impairment. American Journal of Alzheimer's Disease and Other Dementias 31(8):618–30. doi: 10.1177/1533317516654757.CrossRefGoogle ScholarPubMed
Bodner, G. E. & Lindsay, D. S. (2003) Remembering and knowing in context. Journal of Memory and Language 48:563–80.CrossRefGoogle Scholar
Bodner, G. E. & Richardson-Champion, D. D. L. (2007) Remembering is in the details: Effects of test-list context on memory for an event. Memory 15(7):718–29.CrossRefGoogle Scholar
Bogacz, R., Brown, M. W. & Giraud-Carrier, C. (2001) Model of familiarity discrimination in the perirhinal cortex. Journal of Computational Neuroscience 10(1):523.CrossRefGoogle ScholarPubMed
Brady, T. F., Konkle, T., Alvarez, G. A. & Oliva, A. (2013) Real-world objects are not represented as bound units: Independent forgetting of different object details from visual memory. Journal of Experimental Psychology: General 142(3):791808. doi: 10.1037/a0029649.CrossRefGoogle Scholar
Brainerd, C. J. & Reyna, V. F. (2005) The science of false memory. Oxford University Press.CrossRefGoogle Scholar
Breen, N., Caine, D. & Coltheart, M. (2000) Models of face recognition and delusional misidentification: A critical review. Cognitive Neuropsychology 17(1):5571. doi: 10.1080/026432900380481.CrossRefGoogle ScholarPubMed
Buchner, A. & Brandt, M. (2003) Further evidence for systematic reliability differences between explicit and implicit memory tests. Quarterly Journal of Experimental Psychology A 56(2):193209. doi: 10.1080/02724980244000260.CrossRefGoogle ScholarPubMed
Cabeza, R., Ciaramelli, E. & Moscovitch, M. (2012) Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends in Cognitive Sciences 16(6):338–52. doi: 10.1016/j.tics.2012.04.008.CrossRefGoogle ScholarPubMed
Chalfonte, B. L. & Johnson, M. K. (1996) Feature memory and binding in young and older adults. Memory & Cognition 24(4):403–16.CrossRefGoogle ScholarPubMed
Conroy, M. A., Hopkins, R. O. & Squire, L. R. (2005) On the contribution of perceptual fluency and priming to recognition memory. Cognitive and Affective Behavioral Neuroscience 5(1):1420.CrossRefGoogle ScholarPubMed
Conway, M. A. (2005) Memory and the self. Journal of Memory and Language 53:594628.CrossRefGoogle Scholar
Dockree, P. M., O'Keeffe, F. M., Moloney, P., Bishara, A. J., Carton, S., Jacoby, L. L. & Robertson, I. H. (2006) Capture by misleading information and its false acceptance in patients with traumatic brain injury. Brain 129(Pt 1):128–40. doi: 10.1093/brain/awh664.CrossRefGoogle ScholarPubMed
Duarte, A., Henson, R. N. & Graham, K. S. (2008) The effects of aging on the neural correlates of subjective and objective recollection. Cerebral Cortex 18:2169–80.CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A. P. & Ranganath, C. (2007) The medial temporal lobe and recognition memory. Annual Review of Neuroscience 30:123–52. doi: 10.1146/annurev.neuro.30.051606.094328.CrossRefGoogle ScholarPubMed
El Haj, M. & Antoine, P. (2017) Discrepancy between subjective autobiographical reliving and objective recall: The past as seen by Alzheimer's disease patients. Consciousness and Cognition 49:110–16. doi: 10.1016/j.concog.2017.01.009.CrossRefGoogle ScholarPubMed
El Haj, M., Gallouj, K. & Antoine, P. (2019a) Mental imagery and autobiographical memory in Alzheimer's disease. Neuropsychology 33(5):609–16. doi: 10.1037/neu0000521.CrossRefGoogle Scholar
El Haj, M., Kapogiannis, D. & Antoine, P. (2016) Phenomenological reliving and visual imagery during autobiographical recall in Alzheimer's disease. Journal of Alzheimer's Disease 52(2):421–31. doi: 10.3233/JAD-151122.CrossRefGoogle ScholarPubMed
Fiacconi, C. M., Peter, E. L., Owais, S. & Köhler, S. (2016) Knowing by heart: Visceral feedback shapes recognition memory judgments. Journal of Experimental Psychology: General 145(5):559–72. doi: 10.1037/xge0000164.CrossRefGoogle ScholarPubMed
Folville, A., D'Argembeau, A. & Bastin, C. (2019) Deciphering the relationship between objective and subjective aspects of recollection in healthy aging. PsyArXiv. doi:10.31234/osf.io/hjfe4. Available at: https://www.researchgate.net/publication/333906623_Deciphering_the_Relationship_between_Objective_and_Subjective_Aspects_of_Recollection_in_Healthy_Aging.CrossRefGoogle Scholar
Fougnie, D. & Alvarez, G. A. (2011) Object features fail independently in visual working memory: Evidence for a probabilistic feature-store model. Journal of Vision 11(12). (Online publication). doi: 10.1167/11.12.3.CrossRefGoogle ScholarPubMed
Friedman, W. J. (1993) Memory for the time of past events. Psychological Bulletin 113(1):4466.CrossRefGoogle Scholar
Genon, S., Collette, F., Feyers, D., Phillips, C., Salmon, E. & Bastin, C. (2013) Item familiarity and controlled associative retrieval in Alzheimer's disease: An fMRI study. Cortex 49:1566–84.CrossRefGoogle Scholar
Geurten, M., Bastin, C., Salmon, E. & Willems, S. (2019) Hunting down the source: How amnesic patients avoid fluency-based memory errors. Neuropsychology. (Advance online publication.) doi: 10.1037/neu0000566. Available at: http://dx.doi.org/10.1037/neu0000566.CrossRefGoogle ScholarPubMed
Geurten, M., Lloyd, M. & Willems, S. (2017) Hearing “quack” and remembering a duck: Evidence for fluency attribution in young children. Child Development 88(2):514–22. doi: 10.1111/cdev.12614.CrossRefGoogle ScholarPubMed
Geurten, M., Meulemans, T. & Willems, S. (2018) A closer look at children's metacognitive skills: The case of the distinctiveness heuristic. Journal of Experimental Child Psychology 172:130–48. doi: 10.1016/j.jecp.2018.03.007.CrossRefGoogle Scholar
Geurten, M. & Willems, S. (2017) The learned reinterpretation of fluency in amnesia. Neuropsychologia 101:1016. doi: 10.1016/j.neuropsychologia.2017.05.012.CrossRefGoogle ScholarPubMed
Gomes, C. A., Figueiredo, P. & Mayes, A. (2016) Priming for novel object associations: Neural differences from object item priming and equivalent forms of recognition. Hippocampus 26(4):472–91. doi: 10.1002/hipo.22537.CrossRefGoogle ScholarPubMed
Graham, K. S., Patterson, K., Powis, J., Drake, J. & Hodges, J. R. (2002) Multiple inputs to episodic memory: Words tell another story. Neuropsychology 16(3):380–89.CrossRefGoogle ScholarPubMed
Greve, A., Donaldson, D. I. & van Rossum, M. C. W. (2010) A single-trace dual-process model of episodic memory: A novel computational account of familiarity and recollection. Hippocampus 20(2):235–51. doi: 10.1002/hipo.20606.Google ScholarPubMed
Hashtroudi, S., Johnson, M. K. & Chrosniak, L. D. (1990) Aging and qualitative characteristics of memories for perceived and imagined complex events. Psychology of Aging 5(1):119–26.CrossRefGoogle ScholarPubMed
Holdstock, J. S., Mayes, A. R., Roberts, N., Cezayirli, E., Isaac, C. L., O'Reilly, R. C. & Norman, K. A. (2002) Under what conditions is recognition spared relative to recall after selective hippocampal damage in humans? Hippocampus 12(3):341–51. doi: 10.1002/hipo.10011.CrossRefGoogle ScholarPubMed
Howett, D., Castegnaro, A., Krzywicka, K., Hagman, J., Marchment, D., Henson, R., Rio, M., King, J. A., Burgess, N. & Chan, D. (2019) Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142(6):1751–66. doi: 10.1093/brain/awz116.CrossRefGoogle ScholarPubMed
Huntenburg, J. M., Bazin, P. L. & Margulies, D. S. (2018) Large-scale gradients in human cortical organization. Trends in Cognitive Sciences 22(1):2131. doi: 10.1016/j.tics.2017.11.002.CrossRefGoogle ScholarPubMed
Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R. & Wagner, A. D. (2014) Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cerebral Cortex 24(1):4966. doi: 10.1093/cercor/bhs278.CrossRefGoogle ScholarPubMed
Jacoby, L. L., Bishara, A. J., Hessels, S. & Toth, J. P. (2005a) Aging, subjective experience, and cognitive control: Dramatic false remembering by older adults. Journal of Experimental Psychology: General 134(2):131–48. doi: 10.1037/0096-3445.134.2.131.CrossRefGoogle Scholar
Jedidi, H., Daury, N., Capa, R., Bahri, M. A., Collette, F., Feyers, D., Bastin, C., Maquet, P. & Salmon, E. (2015) Brain metabolic dysfunction in Capgras delusion during Alzheimer's disease: A positron emission tomography study. American Journal of Alzheimer's Disease and Other Dementias 30(7):699706. doi: 10.1177/1533317513495105.CrossRefGoogle ScholarPubMed
Johnson, M. K., Kuhl, B. A., Mitchell, K. J., Ankudowich, E. & Durbin, K. A. (2015) Age-related differences in the neural basis of the subjective vividness of memories: Evidence from multivoxel pattern classification. Cognitive, Affective, and Behavioral Neuroscience 15(3):644–61. doi: 10.3758/s13415-015-0352-9.CrossRefGoogle ScholarPubMed
Kafkas, A., Migo, E. M., Morris, R. G., Kopelman, M. D., Montaldi, D. & Mayes, A. R. (2017) Material specificity drives medial temporal lobe familiarity but not hippocampal recollection. Hippocampus 27(2):194209. doi: 10.1002/hipo.22683.CrossRefGoogle Scholar
Ketz, N. A., Jensen, O. & O'Reilly, R. C. (2015) Thalamic pathways underlying prefrontal cortex-medial temporal lobe oscillatory interactions. Trends in Neuroscience 38(1):312. doi: 10.1016/j.tins.2014.09.007.CrossRefGoogle ScholarPubMed
Kuhl, B. A. & Chun, M. M. (2014) Successful remembering elicits event-specific activity patterns in lateral parietal cortex. Journal of Neuroscience 34(23):8051–60. doi: 10.1523/JNEUROSCI.4328-13.2014.CrossRefGoogle ScholarPubMed
Kurilla, B. P. & Westerman, D. L. (2008) Processing fluency affects subjective claims of recollection. Memory & Cognition 36(1):8292.CrossRefGoogle ScholarPubMed
Levy, D. A., Stark, C. E. L. & Squire, L. R. (2004) Intact conceptual priming in the absence of declarative memory. Psychological Science 15(10):680–86. doi: 10.1111/j.0956-7976.2004.00740.x.CrossRefGoogle ScholarPubMed
Markowitsch, H. J. & Staniloiu, A. (2011) Amygdala in action: Relaying biological and social significance to autobiographical memory. Neuropsychologia 49(4):718–33. doi: 10.1016/j.neuropsychologia.2010.10.007.CrossRefGoogle ScholarPubMed
Marsolek, C. J. & Burgund, E. D. (2005) Initial storage of unfamiliar objects: Examining memory stores with signal detection analyses. Acta Psychologica (Amsterdam) 119(1):81106. doi: 10.1016/j.actpsy.2004.11.001.CrossRefGoogle ScholarPubMed
Masson, M. E. J. & Caldwell, J. I. (1998) Conceptually-driven encoding episodes create perceptual misattributions. Acta Psychologica 98:183210.CrossRefGoogle ScholarPubMed
McCabe, D. P. & Balota, D. A. (2007) Context effects on remembering and knowing: The expectancy heuristic. Journal of Experimental Psychology: Learning, Memory, and Cognition 33(3):536–49. doi: 10.1037/0278-7393.33.3.536.Google ScholarPubMed
McCabe, D. P. & Geraci, L. (2009) The role of extralist associations in false remembering: A source misattribution account. Memory & Cognition 37(2):130–42. doi: 10.3758/mc.37.2.130.CrossRefGoogle ScholarPubMed
Millar, P. R., Balota, D. A., Bishara, A. J. & Jacoby, L. L. (2018) Multinomial models reveal deficits of two distinct controlled retrieval processes in aging and very mild Alzheimer disease. Memory & Cognition 46(7):1058–75. doi: 10.3758/s13421-018-0821-9.CrossRefGoogle ScholarPubMed
Mitchell, A. S., Czajkowski, R., Zhang, N., Jeffery, K. & Nelson, A. J. D. (2018) Retrosplenial cortex and its role in spatial cognition. Brain and Neuroscience Advances 2:e2398212818757098. doi: 10.1177/2398212818757098.CrossRefGoogle ScholarPubMed
Mitchell, K. J. & Hill, E. M. (2019) The impact of focusing on different features during encoding on young and older adults’ source memory. Open Psychology 1(1):106–18. doi: 10.1515/psych-2018-0008.CrossRefGoogle Scholar
Montaldi, D. & Mayes, A. R. (2010) The role of recollection and familiarity in the functional differentiation of the medial temporal lobes. Hippocampus 20(11):1291–314.CrossRefGoogle ScholarPubMed
Norman, K. A. (2010) How hippocampus and cortex contribute to recognition memory: Revisiting the complementary learning systems model. Hippocampus 20(11):1217–27. doi: 10.1002/hipo.20855.CrossRefGoogle ScholarPubMed
Oppenheimer, D. M. (2008) The secret life of fluency. Trends in Cognitive Sciences 12(6):237–41. doi: 10.1016/j.tics.2008.02.014.CrossRefGoogle ScholarPubMed
Ozubko, J. D. & Yonelinas, A. P. (2014) The disruptive effects of processing fluency on familiarity-based recognition in amnesia. Neuropsychologia 54:5967. doi: 10.1016/j.neuropsychologia.2013.12.008.CrossRefGoogle ScholarPubMed
Pai, M. C. & Yang, Y. C. (2013) Impaired translation of spatial representation in young onset Alzheimer's disease patients. Current Alzheimer Research 10(1):95103.Google ScholarPubMed
Preston, A. R., Bornstein, A. M., Hutchinson, J. B., Gaare, M. E., Glover, G. H. & Wagner, A. D. (2010) High-resolution fMRI of content-sensitive subsequent memory responses in human medial temporal lobe. Journal of Cognitive Neuroscience 22(1):156–73. doi: 10.1162/jocn.2009.21195.CrossRefGoogle ScholarPubMed
Qin, S., van Marle, H. J., Hermans, E. J. & Fernandez, G. (2011) Subjective sense of memory strength and the objective amount of information accurately remembered are related to distinct neural correlates at encoding. Journal of Neuroscience 31(24):8920–27. doi: 10.1523/JNEUROSCI.2587-10.2011.CrossRefGoogle ScholarPubMed
Ranganath, C. & Ritchey, M. (2012) Two cortical systems for memory-guided behaviour. Nature Reviews: Neuroscience 13:115.CrossRefGoogle ScholarPubMed
Ratcliff, R. & McKoon, G. (1995) Bias in the priming of object decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(3):754–67.Google ScholarPubMed
Ratcliff, R., Smith, P. L., Brown, S. D. & McKoon, G. (2016b) Diffusion decision model: Current issues and history. Trends in Cognitive Sciences 20(4):260–81. Available at: https://doi.org/10.1016/j.tics.2016.01.007.CrossRefGoogle Scholar
Reber, P. J. (2013) The neural basis of implicit learning and memory: A review of neuropsychological and neuroimaging research. Neuropsychologia 51(10):2026–42. doi: 10.1016/j.neuropsychologia.2013.06.019.CrossRefGoogle ScholarPubMed
Reber, R., Wurtz, P. & Zimmermann, T. D. (2004b) Exploring “fringe” consciousness: The subjective experience of perceptual fluency and its objective bases. Consciousness and Cognition 13(1):4760. doi: 10.1016/s1053-8100(03)00049-7.CrossRefGoogle Scholar
Richter, F. R., Cooper, R. A., Bays, P. M. & Simons, J. S. (2016) Distinct neural mechanisms underlie the success, precision, and vividness of episodic memory. eLife 5:e18260. Available at: http://doi.org/10.7554/eLife.18260. Also available at: https://elifesciences.org/articles/18260.Google Scholar
Ritchey, M., McCullough, A. M., Ranganath, C. & Yonelinas, A. P. (2017) Stress as a mnemonic filter: Interactions between medial temporal lobe encoding processes and post-encoding stress. Hippocampus 27(1):7788. doi: 10.1002/hipo.22674.CrossRefGoogle ScholarPubMed
Ritchey, M., Wang, S. F., Yonelinas, A. P. & Ranganath, C. (2019) Dissociable medial temporal pathways for encoding emotional item and context information. Neuropsychologia 124:6678. doi: 10.1016/j.neuropsychologia.2018.12.015.CrossRefGoogle ScholarPubMed
Robin, J. & Moscovitch, M. (2017) Familiar real-world spatial cues provide memory benefits in older and younger adults. Psychology of Aging 32(3):210–19. doi: 10.1037/pag0000162.CrossRefGoogle ScholarPubMed
Rugg, M. D. & King, D. R. (2018) Ventral lateral parietal cortex and episodic memory retrieval. Cortex 107:238–50. doi: 10.1016/j.cortex.2017.07.012.CrossRefGoogle ScholarPubMed
Ruggiero, G., Iavarone, A. & Iachini, T. (2018) Allocentric to egocentric spatial switching: Impairment in aMCI and Alzheimer's Disease patients? Current Alzheimer Research 15(3):229–36. doi: 10.2174/1567205014666171030114821.CrossRefGoogle ScholarPubMed
Ryu, S.-Y., Kwon, M. J., Lee, S.-B., Yang, D. W., Kim, T.-W., Song, I. U., Yang, P. S., Kim, H.-J. & Lee, A. Y. (2010) Measurement of the precuneus and hippocampal volumes using magnetic resonance volumetry in Alzheimer's disease. Journal of Clinical Neurology 6(4):196203. doi: 10.3988.jcn.2010.6.4.196.CrossRefGoogle ScholarPubMed
Serino, S., Morganti, F., Di Stefano, F. & Riva, G. (2015) Detecting early egocentric and allocentric impairments deficits in Alzheimer's disease: An experimental study with virtual reality. Frontiers in Aging Neuroscience 7: article 88. (Online publication). doi: 10.3389/fnagi.2015.00088. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4438252/CrossRefGoogle Scholar
Simmons-Stern, N. R., Deason, R. G., Brandler, B. J., Frustace, B. S., O'Connor, M. K., Ally, B. A. & Budson, A. E. (2012) Music-based memory enhancement in Alzheimer's disease: Promise and limitations. Neuropsychologia 50(14):3295–303. doi: 10.1016/j.neuropsychologia.2012.09.019.CrossRefGoogle ScholarPubMed
Simons, J. S., Graham, K. S. & Hodges, J. R. (2002a) Perceptual and semantic contributions to episodic memory: Evidence from semantic dementia and Alzheimer's disease. Journal of Memory and Language 47(2):197213. Available at: https://doi.org/10.1016/S0749-596X(02)00003-7.CrossRefGoogle Scholar
Simons, J. S., Peers, P. V., Mazuz, Y. S., Berryhill, M. E. & Olson, I. R. (2010) Dissociation between memory accuracy and memory confidence following bilateral parietal lesions. Cerebral Cortex 20(2):479–85. Available at: http://doi.org/10.1093/cercor/bhp116.CrossRefGoogle Scholar
Squire, L. R. & Dede, A. J. (2015) Conscious and unconscious memory systems. Cold Spring Harbor: Perspectives in Biology 7(3): article 021667. doi: 10.1101/cshperspect.a021667. Available at: https://cshperspectives.cshlp.org/.Google ScholarPubMed
Staniloiu, A. & Markowitsch, H. J. (2014) Dissociative amnesia. Lancet Psychiatry 1(3):226–41. doi: 10.1016/s2215-0366(14)70279-2.CrossRefGoogle ScholarPubMed
St. Jacques, P. L., Szpunar, K. K. & Schacter, D. L. (2017) Shifting visual perspective during retrieval shapes autobiographical memories. NeuroImage 148:103–14. doi: 10.1016/j.neuroimage.2016.12.028.CrossRefGoogle ScholarPubMed
Suzuki, W. A. & Naya, Y. (2014) The perirhinal cortex. Annual Review of Neuroscience 37(1):3953. Available at: https://doi.org/10.1146/annurev-neuro-071013-014207.CrossRefGoogle ScholarPubMed
Tibon, R., Fuhrmann, D., Levy, D. A., Simons, J. S. & Henson, R. N. (2019) Multimodal integration and vividness in the angular gyrus during episodic encoding and retrieval. Journal of Neuroscience 39(22):4365–74. Available at: https://doi.org/10.1523/JNEUROSCI.2102-18.2018.CrossRefGoogle ScholarPubMed
Tulving, E. (2002) Episodic memory: From mind to brain. Annual Review of Psychology 53:125. doi: 10.1146/annurev.psych.53.100901.135114.CrossRefGoogle Scholar
Utochkin, I. S. & Brady, T. F. (2019) Independent storage of different features of real-world objects in long-term memory. Journal of Experimental Psychology: General. (Advance online publication). doi: 10.1037/xge0000664.CrossRefGoogle ScholarPubMed
Vann, S. D. (2010) Re-evaluating the role of the mammillary bodies in memory. Neuropsychologia 48(8):2316–27. doi: 10.1016/j.neuropsychologia.2009.10.019.CrossRefGoogle ScholarPubMed
Vann, S. D., Aggleton, J. P. & Maguire, E. A. (2009a) What does the retrosplenial cortex do? Nature Reviews: Neuroscience 10(11):792802. doi: 10.1038/nrn2733.CrossRefGoogle Scholar
Voss, J. L., Lucas, H. D. & Paller, K. A. (2012) More than a feeling: Pervasive influences of memory without awareness of retrieval. Cognitive Neuroscience 3(3–4):193207. doi: 10.1080/17588928.2012.674935.CrossRefGoogle Scholar
Wagner, A. D., Shannon, B. J., Kahn, I. & Buckner, R. L. (2005) Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences 9(9):445–53. Available at: http://doi.org/10.1016/j.tics.2005.07.001.CrossRefGoogle Scholar
Wang, T. H., Johnson, J. D., de Chastelaine, M., Donley, B. E. & Rugg, M. D. (2016) The effects of age on the neural correlates of recollection success, recollection-related cortical reinstatement, and post-retrieval monitoring. Cerebral Cortex 26(4):1698–714. doi: 10.1093/cercor/bhu333.CrossRefGoogle ScholarPubMed
Wells, C. E., Moulin, C. J., Ethridge, P., Illman, N. A., Davies, E. & Zeman, A. (2014) Persistent psychogenic déjà vu: A case report. Journal of Medical Case Reports 8: article no. 414. doi: 10.1186/1752-1947-8-414.CrossRefGoogle ScholarPubMed
Westerman, D. L., Lloyd, M. E. & Miller, J. K. (2002) The attribution of perceptual fluency in recognition memory: The role of expectation. Journal of Memory and Language 47:607–17.CrossRefGoogle Scholar
Whittlesea, B. W. (2002) Two routes to remembering (and another to remembering not). Journal of Experiment Psychology: General 131(3):325–48.CrossRefGoogle Scholar
Whittlesea, B. W. & Price, J. R. (2001) Implicit/explicit memory versus analytic/nonanalytic processing: Rethinking the mere exposure effect. Memory & Cognition 29(2):234–46.CrossRefGoogle ScholarPubMed
Whittlesea, B. W. & Williams, L. D. (2000) The source of feelings of familiarity: The discrepancy-attribution hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition 26(3):547–65.Google ScholarPubMed
Willems, S., Dedonder, J. & Van der Linden, M. (2010) The mere exposure effect and recognition depend on the way you look! Experimental Psychology 57(3):185–92. doi: 10.1027/1618-3169/a000023.CrossRefGoogle ScholarPubMed
Willems, S., Salmon, E. & Van der Linden, M. (2008) Implicit/explicit memory dissociation in Alzheimer's disease: The consequence of inappropriate processing? Neuropsychology 22(6):710–17.CrossRefGoogle ScholarPubMed
Willems, S. & Van der Linden, M. (2006) Mere exposure effect: A consequence of direct and indirect fluency–preference links. Consciousness and Cognition 15(2):323–41. doi: 10.1016/j.concog.2005.06.008.CrossRefGoogle ScholarPubMed
Willems, S. & Van der Linden, M. (2009) Experimental dissociations between memory measures: Influence of retrieval strategies. Consciousness and Cognition 18(1):3955. doi: 10.1016/j.concog.2008.10.001.CrossRefGoogle ScholarPubMed
Wong, J. T., Cramer, S. J. & Gallo, D. A. (2012) Age-related reduction of the confidence-accuracy relationship in episodic memory: Effects of recollection quality and retrieval monitoring. Psychology of Aging 27(4):1053–65. doi: 10.1037/a0027686.CrossRefGoogle ScholarPubMed
Woodruff, C. C., Uncapher, M. R. & Rugg, M. D. (2006) Neural correlates of differential retrieval orientation: Sustained and item-related components. Neuropsychologia 44:3000–10.CrossRefGoogle ScholarPubMed
Wright, P., Randall, B., Clarke, A. & Tyler, L. K. (2015) The perirhinal cortex and conceptual processing: Effects of feature-based statistics following damage to the anterior temporal lobes. Neuropsychologia 76:192207. doi: 10.1016/j.neuropsychologia.2015.01.041.CrossRefGoogle ScholarPubMed
Xue, G. (2018) The neural representations underlying human episodic memory. Trends in Cognitive Sciences 22(6):544–61. doi: 10.1016/j.tics.2018.03.004.CrossRefGoogle ScholarPubMed
Yassa, M. A. & Stark, C. E. (2011) Pattern separation in the hippocampus. Trends in Neuroscience 34(10):515–25. doi: 10.1016/j.tins.2011.06.006.CrossRefGoogle ScholarPubMed
Yazar, Y., Bergström, Z. M. & Simons, J. S. (2012) What is the parietal lobe contribution to long-term memory? Cortex 48(10):1381–82; discussion 1383–87. doi: 10.1016/j.cortex.2012.05.011.CrossRefGoogle ScholarPubMed
Yonelinas, A. P. (2013) The hippocampus supports high-resolution binding in the service of perception, working memory and long-term memory. Behavioral Brain Research 254:3444. Available at: https://doi.org/10.1016/J.BBR.2013.05.030.CrossRefGoogle ScholarPubMed
Yonelinas, A. P. & Ritchey, M. (2015) The slow forgetting of emotional episodic memories: An emotional binding account. Trends in Cognitive Sciences 19(5):259–67. doi: 10.1016/j.tics.2015.02.009.CrossRefGoogle ScholarPubMed
Zeidman, P. & Maguire, E. A. (2016) Anterior hippocampus: The anatomy of perception, imagination and episodic memory. Nature Reviews: Neuroscience 17(3):173–82. doi: 10.1038/nrn.2015.24.CrossRefGoogle ScholarPubMed