Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T17:20:02.422Z Has data issue: false hasContentIssue false

Dynamic hierarchical cognition: Music and language demand further types of abstracta

Published online by Cambridge University Press:  19 June 2020

Tudor Popescu
Affiliation:
Department of Cognitive Biology, University of Vienna, 1090Vienna, Austria. [email protected] [email protected] https://cogbio.univie.ac.at/people/postdoctoral-researchers/tudor-popescu/ https://cogbio.univie.ac.at/people/staff/tecumseh-fitch/
W. Tecumseh Fitch
Affiliation:
Department of Cognitive Biology, University of Vienna, 1090Vienna, Austria. [email protected] [email protected] https://cogbio.univie.ac.at/people/postdoctoral-researchers/tudor-popescu/ https://cogbio.univie.ac.at/people/staff/tecumseh-fitch/

Abstract

Hierarchical structures are rapidly and flexibly built up in the domains of human language and music. These domains require a tree-building capacity – “dendrophilia” – to dynamically infer hierarchical structures from sensory input (or to hierarchically structure output), based on subunits stored in a lexicon. This dynamic process involves a crucial class of abstracta overlooked in the target article.

Type
Open Peer Commentary
Copyright
Copyright © The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cutler, A. (2017) The cornerstones of twenty-first century psycholinguistics. https://doi.org/10.4324/9781315084503-1.Google Scholar
Emery, N. J. & Clayton, N. S. (2004) The mentality of crows: Convergent evolution of intelligence in corvids and apes. Science 306(5703):19031907.CrossRefGoogle ScholarPubMed
Fitch, W. T. (2014) Toward a computational framework for cognitive biology: Unifying approaches from cognitive neuroscience and comparative cognition. Physics of Life Reviews 11(3):329–64. https://doi.org/10.1016/j.plrev.2014.04.005.CrossRefGoogle Scholar
Fitch, W. T., Von Graevenitz, A. & Nicolas, E. (2009) Bio-aesthetics, dynamics and the aesthetic trajectory: A cognitive and cultural perspective. In: Neuroaesthetics, pp. 59102. Baywood Publishing Company, Inc.Google Scholar
Hurley, M. M., Dennett, D. C. & Adams, R. B. Jr. (2011) Inside jokes: Using humor to reverse-engineer the mind. MIT Press.CrossRefGoogle Scholar
Jackendoff, R. (2002) Foundations of language: Brain, meaning, grammar, evolution. Oxford University Press.CrossRefGoogle Scholar
Jiang, X., Long, T., Cao, W., Li, J., Dehaene, S. & Wang, L. (2018) Production of supra-regular spatial sequences by macaque monkeys. Current Biology 28(12):18511859.e4. https://doi.org/10.1016/j.cub.2018.04.047.CrossRefGoogle ScholarPubMed
Koelsch, S., Rohrmeier, M., Torrecuso, R. & Jentschke, S. (2013) Processing of hierarchical syntactic structure in music. Proceedings of the National Academy of Sciences 110(38):1544315448. https://doi.org/10.1073/pnas.1300272110.CrossRefGoogle Scholar
Lerdahl, F. & Jackendoff, R. (1983) A generative theory of tonal music. MIT Press.Google Scholar
Penn, D. C., Holyoak, K. J. & Povinelli, D. J. (2008) Darwin's mistake: Explaining the discontinuity between human and nonhuman minds. Behavioral and Brain Sciences 31(2):109–30.CrossRefGoogle ScholarPubMed
Schenker, H. (1935) Der Freie Satz. Neue musikalische Theorien und Phantasien. Universal Edition.Google Scholar
Suddendorf, T. & Corballis, M. C. (2007) The evolution of foresight: What is mental time travel, and is it unique to humans? Behavioral and Brain Sciences 30(3):299313. Available at: http://doi.org/10.1017/s0140525×07001975.CrossRefGoogle ScholarPubMed
Suddendorf, T. & Corballis, M. C. (2010) Behavioural evidence for mental time travel in nonhuman animals. Behavioural Brain Research 215(2):292298.CrossRefGoogle ScholarPubMed
Wang, L., Uhrig, L., Jarraya, B. & Dehaene, S. (2015) Representation of numerical and sequential patterns in macaque and human brains. Current Biology 25(15):19661974.CrossRefGoogle ScholarPubMed