Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T22:37:52.308Z Has data issue: false hasContentIssue false

Convergent evidence for top-down effects from the “predictive brain”1

Published online by Cambridge University Press:  05 January 2017

Claire O'Callaghan
Affiliation:
Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge CB2 3EB, United Kingdom. [email protected]
Kestutis Kveraga
Affiliation:
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129. [email protected]
James M. Shine
Affiliation:
School of Psychology, Stanford University, Stanford, CA 94305. [email protected]
Reginald B. Adams Jr.
Affiliation:
Department of Psychology, The Pennsylvania State University, University Park, PA 16801. [email protected]
Moshe Bar
Affiliation:
Gonda Center for Brain Research, Bar-Ilan University, Ramat Gan 5290002, Israel. [email protected]

Abstract

Modern conceptions of brain function consider the brain as a “predictive organ,” where learned regularities about the world are utilised to facilitate perception of incoming sensory input. Critically, this process hinges on a role for cognitive penetrability. We review a mechanism to explain this process and expand our previous proposals of cognitive penetrability in visual recognition to social vision and visual hallucinations.

Type
Open Peer Commentary
Copyright
Copyright © Cambridge University Press 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1.

Claire O'Callaghan and Kestutis Kveraga are co-first authors of this commentary.

References

Adams, R. B., Gordon, H. L., Baird, A. A., Ambady, N. & Kleck, R. E. (2003) Effects of gaze on amygdala sensitivity to anger and fear faces. Science 300(5625):1536.Google Scholar
Adams, R. B., Hess, U. & Kleck, R. E. (2015) The intersection of gender-related facial appearance and facial displays of emotion. Emotion Review 7(1):513.Google Scholar
Adams, R. B. & Kleck, R. E. (2005) Effects of direct and averted gaze on the perception of facially communicated emotion. Emotion 5(1):3.CrossRefGoogle ScholarPubMed
Aminoff, E., Gronau, N. & Bar, M. (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cerebral Cortex 17(7):1493–503.Google Scholar
Angelucci, A., Levitt, J. B., Walton, E. J., Hupe, J.-M., Bullier, J. & Lund, J. S. (2002) Circuits for local and global signal integration in primary visual cortex. The Journal of Neuroscience 22(19):8633–46.Google Scholar
Bar, M. (2004) Visual objects in context. Nature Reviews Neuroscience 5(8):617–29.Google Scholar
Bar, M. & Aminoff, E. (2003) Cortical analysis of visual context. Neuron 38(2):347–58.Google Scholar
Bar, M., Kassam, K. S., Ghuman, A. S., Boshyan, J., Schmid, A. M., Dale, A. M., Hämäläinen, M., Marinkovic, K., Schacter, D. & Rosen, B. (2006) Top-down facilitation of visual recognition. Proceedings of the National Academy of Sciences USA 103(2):449–54.CrossRefGoogle ScholarPubMed
Bar, M., Tootell, R. B., Schacter, D. L., Greve, D. N., Fischl, B., Mendola, J. D., Rosen, B. R. & Dale, A. M. (2001) Cortical mechanisms specific to explicit visual object recognition. Neuron 29(2):529–35.Google Scholar
Barnes, J. & David, A. S. (2001) Visual hallucinations in Parkinson's disease: A review and phenomenological survey. Journal of Neurology, Neurosurgery, and Psychiatry 70(6):727–33. doi:10.1136/jnnp.70.6.727.Google Scholar
Bullier, J. (2001) Integrated model of visual processing. Brain Research Reviews 36(2):96107.Google Scholar
Chaumon, M., Kveraga, K., Barrett, L. F. & Bar, M. (2013) Visual predictions in the orbitofrontal cortex rely on associative content. Cerebral Cortex 24(11):2899–907. doi:10.1093/cercor/bht146.Google Scholar
Conway, C., Jones, B., DeBruine, L., Welling, L., Smith, M. L., Perrett, D., Sharp, M. A. & Al-Dujaili, E. A. (2007) Salience of emotional displays of danger and contagion in faces is enhanced when progesterone levels are raised. Hormones and Behavior 51(2):202206.Google Scholar
de Gelder, B. & Tamietto, M. (2011) Faces, bodies, social vision as agent vision, and social consciousness. In: The science of social vision, ed. Adams, R. B., Ambady, N., Nakayama, K. & Shimojo, S., pp. 5174. Oxford University Press.Google Scholar
Ewbank, M. P., Fox, E. & Calder, A. J. (2010) The interaction between gaze and facial expression in the amygdala and extended amygdala is modulated by anxiety. Frontiers in Human Neuroscience 4(56):111.Google ScholarPubMed
Felleman, D. J. & Van Essen, D. C. (1991) Distributed hierarchical processing in the primate cerebral cortex. Cerebral Cortex 1(1):147.CrossRefGoogle ScholarPubMed
Fox, E., Mathews, A., Calder, A. J. & Yiend, J. (2007) Anxiety and sensitivity to gaze direction in emotionally expressive faces. Emotion 7(3):478.Google Scholar
Freeman, J. B., Rule, N. O., Adams, R. B. & Ambady, N. (2010) The neural basis of categorical face perception: Graded representations of face gender in fusiform and orbitofrontal cortices. Cerebral Cortex 20(6):1314–22.CrossRefGoogle ScholarPubMed
Goodale, M. A. & Milner, A. D. (1992) Separate visual pathways for perception and action. Trends in Neurosciences 15(1):2025.Google Scholar
Graham, R. & LaBar, K. S. (2012) Neurocognitive mechanisms of gaze-expression interactions in face processing and social attention. Neuropsychologia 50(5):553–66.Google Scholar
Kveraga, K., Boshyan, J. & Bar, M. (2007a) Magnocellular projections as the trigger of top-down facilitation in recognition. The Journal of Neuroscience 27(48):13232–40. doi:10.1523/jneurosci.3481-07.2007.CrossRefGoogle ScholarPubMed
Kveraga, K., Ghuman, A. S., Kassam, K. S., Aminoff, E. A., Hämäläinen, M. S., Chaumon, M. & Bar, M. (2011) Early onset of neural synchronization in the contextual associations network. Proceedings of the National Academy of Sciences USA 108(8):3389–94.Google Scholar
Macpherson, F. (2015) Cognitive penetration and nonconceptual content. In: The cognitive penetrability of perception: New philosophical perspectives, ed. Zeimbekis, J. & Raftopoulos, A.. pp. 331–59. Oxford University Press.Google Scholar
Panichello, M. F., Cheung, O. S. & Bar, M. (2012) Predictive feedback and conscious visual experience. Frontiers in Psychology 3(620):18.Google Scholar
Salin, P.-A. & Bullier, J. (1995) Corticocortical connections in the visual system: Structure and function. Physiological Reviews 75(1):107–54.Google Scholar
Selimbeyoglu, A. & Parvizi, J. (2010) Electrical stimulation of the human brain: Perceptual and behavioral phenomena reported in the old and new literature. Frontiers in Human Neuroscience 4(46):111.Google Scholar
Shine, J. M., O'Callaghan, C., Halliday, G. M. & Lewis, S. J. G. (2014) Tricks of the mind: Visual hallucinations as disorders of attention. Progress in Neurobiology 116:5865. Available at: http://dx.doi.org/10.1016/j.pneurobio.2014.01.004.Google Scholar
Teufel, C., Subramaniam, N., Dobler, V., Perez, J., Finnemann, J., Mehta, P. R., Goodyer, I. M. & Fletcher, P. C. (2015) Shift toward prior knowledge confers a perceptual advantage in early psychosis and psychosis-prone healthy individuals. Proceedings of the National Academy of Sciences USA 112(43):13401–406.CrossRefGoogle ScholarPubMed
Trapp, S. & Bar, M. (2015) Prediction, context and competition in visual recognition. Annals of the New York Academy of Sciences 1339:190–98. doi:10.1111/nyas.12680.Google Scholar
Ungerleider, L. & Mishkin, M. (1982) Two cortical visual systems. In: Analysis of visual behavior, ed. Ingle, D., Goodale, M. & Mansfield, R., pp. 549–86. The MIT Press.Google Scholar
Waters, F., Collerton, D., ffytche, D. H., Jardri, R., Pins, D., Dudley, R., Blom, J. D., Mosimann, U. P., Eperjesi, F. & Ford, S. (2014) Visual hallucinations in the psychosis spectrum and comparative information from neurodegenerative disorders and eye disease. Schizophrenia Bulletin 40(Suppl 4):S233–45Google Scholar