The ISEE-3 spacecraft has provided in situ observations of electron beams, plasma waves, and associated solar type III radio emission in the interplanetary medium near 1 AU. These observations show that electron beams are formed by the faster electrons arriving before the slower ones, following an impulsive injection at the Sun. The resulting bump-on-tail in the reduced one-dimensional distribution function, f(v||), is unstable to the growth of electrostatic electron plasma (Langmuir) waves. The Langmuir waves are observed to be highly impulsive in nature. The onset and temporal variations of the observed plasma waves are in good qualitative agreement with the wave growth expected from the evolution of measured f(v||). However, far higher Langmuir wave intensities are predicted than are detected. In addition, the lack of obvious plateauing of the bump-on-tail suggests that the waves have been removed from resonance with the beam electrons by some wave-wave interaction. Bursts of low frequency, 30–300 Hz (in the spacecraft frame) waves are often found coincident in time with the most intense spikes of the Langmuir waves. These low-frequency waves appear to be long-wavelength ion acoustic waves, with wave number approximately equal to the beam-resonant Langmuir wave number. The observations suggest several possible interpretations: modulational instability, electrostatic decay instability, and electromagnetic decay instability; but none of these are fully consistent with the observations. Microstructures, too short in duration to be resolved by present experiments, have been invoked as an explanation of the phenomenon. Experiments are currently being developed to study these processes using fast wave-particle correlation techniques.