No CrossRef data available.
Published online by Cambridge University Press: 19 July 2016
We review some recent studies of mass ejections from the Sun using 2-D imaging observations of the Clark Lake multifrequency radioheliograph. Radio signatures of both fast and slow coronal mass ejections (CMEs) have been observed using the Clark Lake radioheliograph. Using temporal and positional analysis of moving type IV and type II bursts, and white light CMEs we find that the type II's and CMEs need not have a direct cause and effect relationship. Instead, the type II seems to be generated by a “decoupled shock”, probably due to an associated flare. The moving type IV burst requires nonthermal particles trapped in magnetic structures associated with the CME. Since nonthermal particles can be generated independent of the speed of CMEs, moving type IV bursts need not be associated only with fast CMEs. Specific examples are presented to support these views.