Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-25T19:14:39.572Z Has data issue: false hasContentIssue false

Product formulas for Steenrod operations

Published online by Cambridge University Press:  20 January 2009

Zaiqing Li
Affiliation:
Department of Mathematics, The University of British Columbia, Vancouver, B.C., Canada, V6T 1Z2 Email: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A star operation is defined and studied for the Steenrod algebra. Numerous product formulas of Steenrod operations are presented.

Type
Research Article
Copyright
Copyright © Edinburgh Mathematical Society 1995

References

REFERENCES

1.Atiyah, M. and Hirzebruch, F., Cohomologie-Operationen und Charakteristische Klassen, Math. Z. 77 (1961), 149187.CrossRefGoogle Scholar
2.Bullet, S. R. and Macdonald, I. G., On the Adem relations, Topology, 21 (1982), 329332.CrossRefGoogle Scholar
3.Davies, D., The anti-automorphism of the Steenrod algebra, Proc. Amer. Math. Soc. 44 (1974), 235236.CrossRefGoogle Scholar
4.Davies, D., On the height of Sq2i, unpublished (1984).Google Scholar
5.Dickson, L. E., A fundamental system of invariants of the general modular linear groups with a solution of the form problem, Trans. Amer. Math. Soc. 12 (1911), 7598.CrossRefGoogle Scholar
6.Li, Z., Formulas for Brown-Peterson operations, Canad. J. Math. 46 (1994), 772792.CrossRefGoogle Scholar
7.Milnor, J., The Steenrod algebra and its dual, Ann. of Math. 67 (1958), 150171.CrossRefGoogle Scholar
8.Milnor, J. and Moore, J., On the structure of Hopf algebras, Ann. of Math. 81 (1965), 211264.CrossRefGoogle Scholar
9.Monks, K. G., Nilpotency & torsion in the Steenrod algebra and its cohomology (Ph.D. Thesis, Lehigh University, 1989).Google Scholar
10.Monks, K. G., Nilpotence in the Steenrod algebra, Preprint (1991).Google Scholar
11.Mui, H., Modular invariant theory and the cohomology algebras of symmetric spaces, J. Fac. Sci. Univ. Tokyo 22 (1975), 319369.Google Scholar
12.Peterson, F. P., Some formulas in the Steenrod algebra, Proc. Amer. Math. Soc. 45 (1974), 291294.CrossRefGoogle Scholar
13.Steenrod, N. E. and Epstein, D. B. A., Cohomology operations (Ann. of Math. Studies, 50, Princeton University Press, 1962).Google Scholar
14.Wilkerson, C., A primer of the Dickson invariants, Contemp. Math. 19 (1983), 421434.CrossRefGoogle Scholar